

Joint use of hyperspectral remote sensing and fluxes to understand ecosystems responses to nutrient manipulation

Mirco Migliavacca,

Tarek El Madany, Oscar Perez-Priego, Richard Nair, Arnaud Carrara, Tiana Hammer, Kathin Henkel, Olaf Kolle, Yunpeng Luo, Gerardo Moreno, Kendalynn Morris, Marion Schrumpf, Thomas Wutzler, and Markus Reichstein

Joint Conference of

AsiaFlux Workshop 2017 and the 15th Anniversary Celebration of ChipaFLUX

August 16-19, 2017

Beijing China

Alexander von Humboldt Stiftung/Foundation

Motivation

ARTICLE

Received 18 Jun 2013 | Accepted 14 Nov 2013 | Published 17 Dec 2013

DOI: 10.1038/ncomms3934

Human-induced nitrogen-phosphorus imbalances alter natural and managed ecosystems across the globe

Josep Peñuelas^{1,2}, Benjamin Poulter³, Jordi Sardans^{1,2}, Philippe Ciais³, Marijn van der Velde⁴, Laurent Bopp³, Olivier Boucher⁵, Yves Godderis⁶, Philippe Hinsinger⁷, Joan Llusia^{1,2}, Elise Nardin⁶, Sara Vicca⁸, Michael Obersteiner⁴ & Ivan A. Janssens⁸

The availability of carbon from rising atmospheric carbon dioxide levels and of nitrogen from various human-induced inputs to ecosystems is continuously increasing; however, these increases are not paralleled by a similar increase in phosphorus inputs. The inexorable change in the stoichiometry of carbon and nitrogen relative to phosphorus has no equivalent in Earth's history. Here we report the profound and yet uncertain consequences of the human imprint on the phosphorus cycle and nitrogen:phosphorus stoichiometry for the structure, functioning and diversity of terrestrial and aquatic organisms and ecosystems. A mass balance approach is used to show that limited phosphorus and nitrogen availability are likely to jointly reduce future carbon storage by natural ecosystems during this century. Further, if phosphorus fertilizers cannot be made increasingly accessible, the crop yields projections of the Millennium Ecosystem Assessment imply an increase of the nutrient deficit in developing regions.

Motivation

Nutrient availability

Water and Nutrient availability

C and H2O Fluxes

Water Use Efficiency

Ecosystem functional response to different N/P stoichiometry

Structural and physiological phenology

Phenology

Above-/Below-Ground Biomass

SIF to predict GPP

Ecosystem Respiration C-Allocation C-Turnover

Soil processes and properties

Nutrient availability

Las Majadas del Tietar (39°56'29" N, 5°46'24" W), Extremadura, Spain

Ecosystem: dehesa Mediterranean Holm Oak open woodland (Savanna)

Mediterranean Climate: annual T = 16.7 °C, annual Prec = 550 mm LAI = 0.4 (trees) + 1-1.5 (grass)

Soil: Stagnic Alisols, depth > 2m. Texture: sandy loam. soil C is 8.5 g/kg and soil N is 0.82 g/kg (0-20cm layer).

Tree canopy: 98% Quercus Ilex; 25 tree/ha; mean DBH = 45cm; canopy height = 7-10 m; canopy fraction = 20%

Management: tree pruning every 25 years to optimize acorn production

Herbaceous layer: high biodiversity (easy to find > 20 species within 4 m²); ≠ composition below tree / open;

Management: continuous grazing (cows)

Courtesy A. Carrara

Experimental Site

Experimental Site

Experimental Site – Long Term EC station

Data collected by CEAM – Valencia (PI Arnaud Carrara)

Experimental Site - Phenology

- Typical Mediterranean ecosystem with dry summer
- Grass layer activity determined by water availability
- Evergreen Holm Oak
- Definition of phenophase based on grenness (e.g peak of season)

Experimental Site – SMANIE

Migliavacca et al., 2017 New Phytologist

Experimental Site – SMANIE

PLOT	Fertilizer	N, kg/ha	P, kg/ha	K, kg/ha
Ν	Potassium Nitrate (KNO ₃) Ammonium Nitrate (NH ₄ NO ₃)	44 156		123
Ρ	Monopotassium Phosphate (KH ₂ PO ₄)		100	123
N+P	Ammonium Nitrate (NH ₄ NO ₃) Monopotassium Phosphate (KH ₂ PO ₄)	200	100	123

Fertilization conducted in March 2014 and 2015

- Green/Dry biomass
- Direct LAI
- Canopy height
- Plant forms abundance
- Nutrient analysis in the main plant forms
- Soil C, N, and P content
- Top of the canopy images

- 1) Effects of N and P availability on fluxes: Photosynthesis (GPP) and Total Ecosystem Respiration (Reco)
- 2) Effects on efficiencies: Light and Water Use
- 3) Detection of ecosystem functions with Sun Induced Fluorescence (SIF): Interplay between Photosyntehsis, Structural Changes and photosynthetic efficiencies

... Ecosystem scale responses

Manie Max Planck Institute for Biogeochemistry

Faster phosphate turnover in plot fertilized with nitrogen or phosphorus implying co-limitation

Site	Treatment	$\delta^{18}O_{P}$ (‰)	Bioavailable P concentration (µg/g soil)	Organic P concentration (µg/g soil)	C concentration (mg/g soil)	N concentration (mg/g soil)
MANIP	Control	23.8 ± 0.8	4.6 ± 0.3	15.9 ± 0.5	10.1 ± 1.8	0.9 ± 0.2
	Control - Tree	24 ± 0.8	9.4 ± 0.3	19.2 ± 3.1	20.8 ± 5.6	1.8 ± 0.5
	Ν	23.1 ± 0.2	5.3 ± 1.1	10.7 ± 1.6	11.1 ± 0.6	1.0 ± 0.1
	N - Tree	23.6 ± 1.1	4.4 ± 2.8	19.6 ± 2.6	17.9 ± 4.3	1.7 ± 0.3
	Р	25.1 ± 2.2	10.8 ± 9.9	10.0 ± 1.6	8.0 ± 3.1	0.7 ± 0.3
	P - Tree	25.8 ± 0.7	12.7 ± 2.3	20.7 ± 5.2	22.9 ± 7.6	2.0 ± 0.5
	NP	23.6 ± 0	9.1 ± 0.1	16.7 ± 0.5	11.8 ± 1.7	1.1 ± 0.1
	NP - Tree	25.1 ± 0.1	10.6 ± 1.3	22.9 ± 6.3	19.4 ± 2.0	1.8 ± 0.2
SMANIE	Control	23.1 ± 0.4	4.1 ± 0.4			
	Ν	23.2 ± 0.8	4.9 ± 0.8			
	Р	25.2 ± 0.6	21.2 ± 4			
	NP	24.4 ± 0.4	16.2 ± 1.7			

Weiner et al., (Submitted)

Response of fluxes

April2014 April2015 April2016 April2017 S ŝ S S NEE [mmol $m^2 s^{-1}$] NEE [mmol m²s⁻¹] NEE [mmol m²s⁻¹] NEE [mmol m²s⁻¹] 0 0 0 0 Ϋ́ ŝ ŝ Ϋ́ -10 -10 -10 -10 -10 ** -15 --15 ** 15 20 20 15 20 15 20 0 0 5 10 15 10 5 10 0 5 0 10 Time [Hr] Time [Hr] Time [Hr] Time [Hr] 250 250 250 250 Main ** North - N 200 200 200 200 South - NP LE [W m^{-2}] 150 LE [W m^{-2}] 150 150 150 LE [W m⁻²] LE [W m^{-2}] 100 100 100 100 50 50 50 50 0 0 0 0 -50 -50 -50 -50 20 20 20 15 20 0 15 0 5 10 15 0 5 10 15 10 5 10 0 5 Time [Hr] Time [Hr] Time [Hr] Time [Hr]

Manip

Photosynthesis vs Ecosystem Respiration

Statistical significant differences slope post fertilization ANCOVA (p < 0.05)

Max Planck Institute MaN for Biogeochemistry 25 ** ** 20 30-GPP [mmol m^2s^{-1}] Amax [umolCO2m⁻²s⁻¹] 0 -15 Site CTRL N-ADD 10 NP-ADD S 0 0-2015-04 2014-04 2016-04 2017-04 200 600 1000 400 800 Month 25 Dry Period *1 20 ** GPP [mmol m^2s^{-1}] 15 AMAX [umolCO2m⁻²s⁻¹] Site 6 Control N-ADD NP-ADD S 1 0 200 400 600 800 1000 0 0 2014 2015 2016

Rg [W m⁻²]

Response of Water Use Efficiency

Response of Water Use Efficiency

MINIRHIZOTRON MEASUREMENTS

'remote sensed' Root biomass Root dynamics/phenology INGROWTH CORES AND DIRECT SAMPLING

Root Biomass, Root C/N/P

INGROWTH CORES CONTAINING ¹⁵N -

LITTER

Soil ¹⁵N partitioning / litter decomposition

Nair et al., In Prep

RCI: Root Cover 'Index'

Nair et al., In Prep

...a remote sensing perspective

Mapping Photosynthesis from Space - a new vegetation-fluorescence technique ESA bulletin. Bulletin ASE. European Space Agency. 11/2003; 116:34-37.

Structural and physiological indices and SIF@760nm

Fig 2. Seasonal time course of mean midday VIs; a)Fy760, b)sPRI, c) NDVI, and d) ND.750.705 among C, N, NP and P treatments in a Mediterranean grassland in Spain. Bars indicate SE, N=4. Different letters denote significant difference (Weilch t test, P0.05).

- MTCI strongly related with canopy N content (r=0.89***)
- sPRI and SIF@760 nm jointly used to detect LUE across treatments

Perez-Priego et al., 2015

....but also Damn et al., 2015 RSE; Wieneke et al., 2017 RSE; Liu et al., 2017; Guanter et al

Response of Photosynthesis - Modeling

Effects of fertilization on functional traits

- changes in foliar N,P content and LMA
 → changes in Chl ab and Vcmax
- Walker et al., 2014; Hobourg et al., 2013; Feng and Dietze et al., 2013

Modified from Perez-Priego et al 2015 (BG)

Houborg et al 2013 (AFM)

Response of Photosynthesis - Modeling

Effects of fertilization on biodiversity and canopy structure

- Changes in the fraction of plant forms (%) lead to changes in leaf angle distribution
- Parameters recomputed accounting for a typical Leaf Angle Distribution the 3 main plant forms

Campaign	Treatment	$ \begin{array}{c c} Total \\ PAI_g \\ (m^2 m^{-2}) \end{array} $	Total PAI _g (m ² m ⁻²)	Forbs f _{PAI}	Grass f _{PAI}	Legumes f _{PAI}	
Date	-	mean	SD	%	%	%	
no. 1	C	0.85	0.18	35.5	56.8	7.7	Ī
20 March 2014	N	0.76	0.21	39.2	45.1	15.0	
Growing period	NP	1.03	0.30	29.1	54.3	12.9	
Pretreatment	P	0.95	0.21	26.6	66.6	6.9	
no. 2	C	2.02	0.43	14.5	85.2	0.3	Γ
15 April 2014	N	2.17	0.91	11.9	87.6	0.4	
Growing period	NP	2.46	0.45	4.1	95.6	0.3	
Posttreatment	Р	1.66	0.58	14.2	85.7	0.1	
no. 3	C	1.08	0.27	43.0	55.1	1.9	Γ
7 May 2014	N	1.29	0.58	28.3	70.7	1.0	
Dry period	NP	0.84	0.21	27.2	71.8	1.0	
	P	1.37	0.57	39.5	58.5	2.0	
no. 4	C	0.44	0.10	66.7	33.3	0.0	Γ
27 May 2014	N	0.48	0.28	36.4	63.6	0.0	
Dry period	NP	0.53	0.26	40.6	59.4	0.0	
	P	0.71	0.31	56.1	43.9	0.0	

Perez-Priego et al 2015 (BG)

LIDFa, **LIDFb** according to variation of plant forms % (Asner 1998, RSE):

Grass: erectophile Legumes: planophile Forbs: spherical

Craine et al 2001 (OIKOS)

....but also Damn et al., 2015 RSE; Wieneke et al., 2017 RSE; Liu et al., 2017; Guanter et al

Max Planck Institute for Biogeochemistry

Response of Photosynthesis

Migliavacca et al., 2017 (New Phytologist)

Migliavacca et al., 2017 (New Phytologist)

- We presented 3-years round of EC data from a nutrient manipulation experiment
- Fertilization with N and NP increased the net C uptake, GPP and Reco at annual time scale
 - Higher relative increase of photosynthetic CO2 uptake compared to ecosystem respiration
 - Ecosystem response dominated by the response in the grass
- Barely significant increase of the water use efficiency at annual time scale BUT...
 - Significant differences between treatments observed in specific periods (e.g. the **dry-down** and the **autumn season)**;
 - NP treatment higher iWUE in autumn

- Observed variability in F₇₆₀ explained primarily by change in canopy structure
 - changes in biodiversity → plant forms abundance → LIDFa,b after fertilization
 - Secondarily by **functional traits** (N/P/LMA \rightarrow Chl ab \rightarrow Vcmax);
- Changes in canopy structure (leaf angle distribution) control the GPP-F₇₆₀ relationship;

 Implication for global/regional scale modelling: structural variability (biodiversity) and functional traits could be important confounding factors when modeling GPP assuming a linear relationship with Far red SIF at PFT level

Collaborations and Institutes involved

Response of Photosynthesis

Pathways of solar energy after absorption by leaf chlorophylls (FLUORESCENCE)

- Under natural solar illumination conditions leaf level **SIF and photosynthesis are positively correlated**;
- Fluorescence at 690 and 740 nm are related to activity of PSII and PSI, respectively. Typically we measure fluorescence at 760 nm (Porcar-Castell et al., 2014)

Pathways of solar energy after absorption by leaf chlorophylls (HEAT DISSIPATION)

Garbulski et al., 2014

Motivation

Mapping Photosynthesis from Space - a new vegetation-fluorescence technique ESA bulletin. Bulletin ASE. European Space Agency. 11/2003; 116:34-37.

Motivation

- SIF can be used to predict GPP (e.g. Guanter et al., 2014; Van der Tol et al., 2014);
- Current challenge is to understand the mechanisms controlling the relationship between photosynthetic CO2 uptake (e.g. GPP) and SIF (Guanter et al., 2014; Damn et al., 2015; Porcar-Castell et al., 2014);

Motivation

....but also Damn et al., 2015 RSE; Wieneke et al., 2017 RSE; Liu et al., 2017; Guanter et al., 2014; Van der Tol et al., 2014; Porcar-Castell et al., 2014 and others

Many confounding factors

- Competition between the three processes and modulation of the ratio between NPQ and fluorescence
 - Down-regulation NPQ as consequence of **relieved N** and **water limitation** (*Cendrero-Mateo 2015; Perez-Priego et al., 2015*);
 - Light quality and history (shade/sunlit) that affect the pool of carotenoids (*Niimenets et al., 2003*);
- Multiple scattering and probability of re-absorption of emitted SIF depends on canopy structure and Leaf Angle Distribution (LIDFa, b) (e.g Van Wittenberghe et al., 2015; Verrelst et al., 2016);
- Directional, atmospheric or instrumental effects (e.g. *Damm et al., 2015*)

- How do changes in canopy structure (i.e. fertilization-induced changes in biodiversity) and and functional traits affect F₇₆₀ signal?
- Why does the relationship between GPP-F₇₆₀ change across treatments?

Hypotheses

- **Biochemistry** Nutrient mediated changes in foliar biochemistry (changes in Vcmax, Chl ab)
- **Canopy Structure induced by changes in Biodiversity** Nutrient mediated changes in canopy structure (Fertilization changes the compositions of the plant forms, leaf angles and canopy height)

MANIP – Small Scale Manipulation

MANIP – Linking RS data and fluxes

PLOT	Fertilizer	N, kg/ha	P, kg/ha	K, kg/ha
Ν	Potassium Nitrate (KNO_3) Ammonium Nitrate (NH_4NO_3)	44 156		123
Ρ	Monopotassium Phosphate (KH ₂ PO ₄)		100	123
N+P	Ammonium Nitrate (NH ₄ NO ₃) Monopotassium Phosphate (KH ₂ PO ₄)	200	100	123

Fertilization conducted in March 2014 and 2015

- Green/Dry biomass
- Direct LAI
- Canopy height
- Plant forms abundance
- Nutrient analysis in the main plant forms
- Soil C, N, and P content
- Top of the canopy images

Modeling – Factorial runs with SCOPE

Courtesy of C. Van der Tol, Abel Summer School presentation

Modeling – SCOPE parameterization

Effects of fertilization on functional traits

- changes in foliar N,P content and LMA
 → changes in Chl ab and Vcmax
- Walker et al., 2014; Hobourg et al., 2013; Feng and Dietze et al., 2013

Modified from Perez-Priego et al 2015 (BG)

Houborg et al 2013 (AFM)

Modeling – SCOPE parameterization

Effects of fertilization on biodiversity and canopy structure

- Changes in the fraction of plant forms (%) lead to changes in leaf angle distribution
- Parameters recomputed accounting for a typical Leaf Angle Distribution the 3 main plant forms

Campaign	Treatment	Total PAIg (m ² m ⁻²)	Total PAI _g (m ² m ⁻²)	Forbs f _{PAI}	Grass f _{PAI}	Legumes $f_{\rm PAI}$	
Date	-	mean	SD	%	%	%	
no. 1	C	0.85	0.18	35.5	56.8	7.7	Γ
20 March 2014	N	0.76	0.21	39.2	45.1	15.0	
Growing period	NP	1.03	0.30	29.1	54.3	12.9	
Pretreatment	P	0.95	0.21	26.6	66.6	6.9	
no. 2	C	2.02	0.43	14.5	85.2	0.3	Ι
15 April 2014	N	2.17	0.91	11.9	87.6	0.4	
Growing period	NP	2.46	0.45	4.1	95.6	0.3	
Posttreatment	Р	1.66	0.58	14.2	85.7	0.1	
no. 3	C	1.08	0.27	43.0	55.1	1.9	Γ
7 May 2014	N	1.29	0.58	28.3	70.7	1.0	
Dry period	NP	0.84	0.21	27.2	71.8	1.0	
	P	1.37	0.57	39.5	58.5	2.0	
no. 4	C	0.44	0.10	66.7	33.3	0.0	Ι
27 May 2014	N	0.48	0.28	36.4	63.6	0.0	
Dry period	NP	0.53	0.26	40.6	59.4	0.0	
	P	0.71	0.31	56.1	43.9	0.0	

Perez-Priego et al 2015 (BG)

LIDFa, **LIDFb** according to variation of plant forms % (Asner 1998, RSE):

Grass: erectophile Legumes: planophile Forbs: spherical

Craine et al 2001 (OIKOS)

Modeling – Factorial runs

Results – Model evaluation

Results – Model evaluation

Model Evaluation for each field campaign and treatment

Max Planck Institute for Biogeochemistry

Results – F₇₆₀ and canopy structure

- Observed variability in F₇₆₀ explained primarily by change in canopy structure
 - changes in biodiversity → plant forms abundance → LIDFa,b after fertilization
 - Secondarily by functional traits (N/P/LMA \rightarrow Chl ab \rightarrow Vcmax);
- Changes in canopy structure (leaf angle distribution) control the GPP-F₇₆₀ relationship;

 Implication for global/regional scale modelling: structural variability (biodiversity) and functional traits could be important confounding factors when modeling GPP assuming a linear relationship with Far red SIF at PFT level

Thanks to....

Collaborations and Institutes involved

Alexander von Humboldt Stiftung/Foundation

EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

Max Planck Institute for Biogeochemistry

Thanks to:

Freiland, Verena Bessenbacher, Andreas Bukart, Roberto Colombo, Jin-Hong Guan, Marion Schrumpf, Arnaud Carrara, Ramon Jimenez, Tommaso Julitta, Gerardo Moreno, Uwe Rascher, Micol Rossini, Markus Reichstein

Thanks for your attention

More info:

www.bgc-jena.mpg.de/bgi/index.php/Research/BAIE

BACKUP MATERIAL

Replicates?

-Temporal variability preferred

-Footprint analysis as surrogate

Results – Impact on Autumn phenology

Results – Water Use Efficiency

Results – year to year variability of fluxes

Results – year to year variability of fluxes

- Typical Mediterranean ecosystem with dry summer
- Grass layer activity determined by water availability
- Evergreen Holm Oak
- Definition of phenophase based on grenness (e.g peak of season)

Results – year to year variability of fluxes

MANIP – Small Scale Manipulation

Experimental Site – Long Term EC station

Data collected by CEAM – Valencia (PI Arnaud Carrara)

- **Barely significant** increase of the **water use efficiency** at annual time scale BUT...
 - Significant differences between treatments observed in specific periods (e.g. the dry-down and the autumn season);
 - NP treatment higher iWUE in autumn
- The NP-ADD treatment is more dynamic in particular in Autumn after the first rainfall.
- After fertilization the different treatments show changes in sensitivities of processes to climate drivers and efficiencies in specific moment of the year:
 - N and NP \rightarrow higher light use efficiency in spring
 - NP more responsive and more respiration in particular in fall
 - NP with WUE

Response of Soil processes

Faster phosphate turnover in plot fertilized with nitrogen or phosphorus implying co-limitation

Site	Treatment	$\delta^{18}O_{P}$ (‰)	Bioavailable P concentration (ug/g soil)	Organic P concentration (µg/g soil)	C concentration (mg/g soil)	N concentration (mg/g soil)
MANIP	Control	23.8 ± 0.8	4.6 ± 0.3	15.9 ± 0.5	10.1 ± 1.8	0.9 ± 0.2
	Control - Tree	24 ± 0.8	9.4 ± 0.3	19.2 ± 3.1	20.8 ± 5.6	1.8 ± 0.5
	Ν	23.1 ± 0.2	5.3 ± 1.1	10.7 ± 1.6	11.1 ± 0.6	1.0 ± 0.1
	N - Tree	23.6 ± 1.1	4.4 ± 2.8	19.6 ± 2.6	17.9 ± 4.3	1.7 ± 0.3
	Р	25.1 ± 2.2	10.8 ± 9.9	10.0 ± 1.6	8.0 ± 3.1	0.7 ± 0.3
	P - Tree	25.8 ± 0.7	12.7 ± 2.3	20.7 ± 5.2	22.9 ± 7.6	2.0 ± 0.5
	NP	23.6 ± 0	9.1 ± 0.1	16.7 ± 0.5	11.8 ± 1.7	1.1 ± 0.1
	NP - Tree	25.1 ± 0.1	10.6 ± 1.3	22.9 ± 6.3	19.4 ± 2.0	1.8 ± 0.2
SMANIE	Control	23.1 ± 0.4	4.1 ± 0.4			
	Ν	23.2 ± 0.8	4.9 ± 0.8			
	Р	25.2 ± 0.6	21.2 ± 4			
	NP	24.4 ± 0.4	16.2 ± 1.7			

Weiner et al., (JGR Submitted)

Response of Soil processes

Grassland layer

