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Abstract

Sunshine duration is widely used to estimate solar radiation, but this estimated inherently contains some uncertainties, limiting its
applications. This study investigated the impacts of the estimated solar radiation on simulated gross primary productivity (GPP), which
were obtained using ecosystem models – light use efficiency model (LUE) and process-based model – Boreal Ecosystem Productivity
Simulator (BEPS) at an evergreen coniferous forest ecosystem in southeast China. The models for solar radiation and diffuse radiation
estimation were calibrated through observation data from nearby meteorological stations. The results showed that the established model
could be successfully used to estimate solar radiation with high coefficient of determination (0.92) and low root mean square error
(2.18 MJ m�2 day�1), but the solar radiation was overestimated when the clearness index was less than 0.15 and underestimated when
it was within the range of 0.2–0.35 or greater than 0.6. The estimated solar radiation has significant influence on the diffuse radiation
estimation and GPP simulation comparing with using observations. The two ecosystem models reacted differently to the errors of
estimated solar radiation. For the LUE model, the estimated solar radiation led to the underestimated GPP in growing season
(May–October), and overestimated GPP during non-growing season (November–April) with the bias ranged from �11% to 10% depend-
ing on the month of a year. For the BEPS model, estimated solar radiation resulted in overestimated GPP in most months with the bias
ranged from �6% to 20%. The difference between the simulated GPP based on these two sources of solar radiation could be counteracted
to some extent at the annual scale, especially for LUE model.
� 2015 Elsevier Ltd. All rights reserved.
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1. Introduction

Forest ecosystem plays a pivotal role in the global car-
bon cycle and partially mitigates the rising atmospheric
carbon dioxide (CO2) concentration due to its role as a car-
bon sink (Pan et al., 2011). Understanding the forest
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Nomenclature

a–ei coefficients in solar radiation and diffuse radia-
tion estimation models

emax maximum light use efficiency
X clumping index
Acanopy canopy-level photosynthesis
Asun photosynthesis rates of sunlit leaf groups
Ash photosynthesis rates of shaded leaf groups
APAR absorbed photosynthetically active radiation
BEPS Boreal Ecosystem Productivity Simulator
fPAR fraction of photosynthetically active radiation
GPP gross primary productivity
GPPs simulated GPP by LUE and BEPS models
GPPe estimated GPP from EC measurement
LUE light use efficiency model
Lsun sunlit leaf area
Lsh shaded leaf area
L total leaf area
LAI leaf area index
MBE mean bias error

N number of observations
Qobs observed values
Qest estimated values
R0 extraterrestrial radiation on horizontal surface
R2 coefficient of determine
Rb directed radiation
Rd diffuse radiation
Rde diffuse radiation calculated from estimated solar

radiation
Rdo diffuse radiation calculated from observed solar

radiation
RMSE root mean square error
Rs solar radiation
Rse estimated solar radiation
S sunshine duration
S0 day length
Ta minimum air temperature
VPD vapor pressure deficit
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carbon dynamics via ecosystem models is necessary for
investigating the driving forces and mechanism of carbon
sequestration (Pommerening et al., 2011; Richardson
et al., 2012). Global solar radiation (Rs) is an essential
input variable to ecosystem models. It provides the primary
energy source driving the physical and biochemical
processes (transpiration and photosynthesis) of plant and
determining forest gross primary productivity (GPP)
(Mercado et al., 2009). Unfortunately, the continuous Rs

measurement is often not available at many forest regions
(Adaramola, 2012; Liu et al., 2009a; Polo et al., 2015),
and has to be estimated from other available meteorologi-
cal observations (Angstrom, 1924; Besharat et al., 2013;
Prescott, 1940; Yorukoglu and Celik, 2006). The impact
of estimated Rs (Rse) on ecosystem models are mainly
focused on the prediction of crop yields (cotton, maize,
peanut, rice, etc.) around the world (Abraha and Savage,
2008; Garcia y Garcia et al., 2008; Phakamas et al., 2013;
Trnka et al., 2007). However, fewer studies focused on
the impact of Rse on the calculation of GPP in forest
ecosystems, although these systems play an important role
in global terrestrial carbon cycle.

The impacts of Rse on the outcome of ecosystem models
are related to the model structure. The overall effects of
bias in Rse might be canceled out because the biases are
more or less normally distributed with a mean of zero
and the relationships between Rs biases and yield estimates
are more or less linear (Pohlert, 2004; Xie et al., 2003). It
was also found that Rse produced deviations in excess of
±25% in site-specific yield forecast because of the complex-
ity of the model response (Trnka et al., 2007, 2005). In
recent decades, a variety of models have been developed
for calculating forest GPP at site, regional and global
scales, embracing light use efficiency (LUE) models and
process-based ecological models (Cai et al., 2014; Chen
et al., 2012; Cramer et al., 2001; Running and Coughlan,
1988; Xiao et al., 2004). The LUE models, such as CASA
(Potter et al., 1993), Global Production Efficiency Model
(GLOPEM) (Prince and Goward, 1995), MOD17 algo-
rithm (Running et al., 2000), VPM (Xiao et al., 2004),
EC-LUE (Yuan et al., 2007), assuming that GPP be
directly related to absorbed photosynthetically active radi-
ation (APAR), which is calculated as the product of Rs and
fraction of photosynthetically active radiation (fPAR)
(Yuan et al., 2014). They did not differentiate various
responses of different leaves (sunlit and shaded leaves) to
the environment and labeled as the “big-leaf” approach.
The simulated GPP using these models is very sensitive
to Rs due to the linear relationship between GPP and Rs

(Yuan et al., 2014). For example, larger errors of these
reanalysis radiation products (MERRA, ECMWF, and
NCEP) resulted in larger uncertainty in GPP simulation
comparing with these higher consistency satellite-derived
radiation products (GLASS, ISCCP) in EC-LUE model
(Cai et al., 2014). Another important GPP simulation strat-
egy is to differ the sensitivity of carbon fixed by sunlit and
shaded leaves to Rs, which named “two-leaf” model
(Sprintsin et al., 2012). The sunlit leaves in the canopy
are often light saturated as they both absorbed diffuse radi-
ation (Rd) and directed radiation (Rb), whereas shaded
leaves often suffer from a lower exposure to incoming radi-
ation as only Rd reached (Mercado et al., 2009). GPP sim-
ulation using this kind of models is affected not only by Rs

but also by the fractions of Rd (Sprintsin et al., 2012). This
implies that the accuracy of Rse might have different
impacts on “big-leaf” and “two-leaf” models. However,
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rarely research has been done to quantify the impact of Rse

on outcomes of these different ecosystem models at the
same forest site.

Previous studies indicated that the conversion from sun-
shine duration to Rs produces better estimates than other
approaches and variables (Adaramola, 2012; Trnka et al.,
2005; Yorukoglu and Celik, 2006). As Rs was observed at
92 radiation stations in China, accounting for only 13%
of observed sunshine duration at 753 national basic
meteorological stations. Rs was normally estimated from
sunshine duration and used to calculate diffuse radiation
in the calculation of carbon budget of forest ecosystems
in China (Ju et al., 2010a; Liu et al., 2014). However, the
performance of the Rse and Rd was not systematically eval-
uated. The subtropical forest ecosystem of China has been
proved to be one of the highest carbon uptakes of forests
worldwide, and represented another large carbon uptake
region (Yu et al., 2014). Radiation is the main constraint
of photosynthesis in these areas due to the frequently rainy
and/or cloudy days, which also considerably influences the
accuracy of radiation estimation from sunshine duration.
How errors in Rse affected GPP simulation for the forest
ecosystems have not been thoroughly investigated.

The objectives of this study are to investigate: (1) the
performance of sunshine duration based on solar radiation
estimation in subtropical forest area in southeast China; (2)
the difference between the diffuse radiation estimated
from observed solar radiation and diffuse radiation
estimated from estimated solar radiation; (3) the impact
of estimated solar radiation on GPP simulation in LUE
model (MOD17 algorithm, big-leaf model) and
process-based model (Boreal Ecosystem Productivity
Simulator, BEPS, two-leaf model) and the differences
between these models.
Fig. 1. Locations of six meteorological station
2. Materials and methods

2.1. Data used

2.1.1. Measurements of sunshine duration, solar radiation,

and diffuse radiation
Measurements over the period of 2000–2006 at six mete-

orological stations (Fig. 1) in southeast China were used to
examine the relationship between daily sunshine duration
and daily Rs. Sunshine duration was measured with the
Jordan sunshine recorder. Rs was measured using auto-
matic telemetering radiometer (thermoelectric type, special
optical black paint for induction surface) with relative
error of ±0.5%. Data quality control was conducted for
each station using the same standard. Further check of out-
liers was done in this study. No more than four outliers in
each year were found and were replaced by the average val-
ues on two adjacent days. Information about six sites is
presented in Table 1. Diffuse radiation observed at
ShangHai, WuHan, and GuangZhou was used to establish
the function for partitioning Rd from Rs.

2.1.2. Flux data measured at Qianyanzhou site

Flux data measured at Qianyanzhou was used for
ecosystem model validation. This site is located at Jiangxi
Province of southeast China, a typical evergreen coniferous
plantation forest ecosystem with subtropical monsoon cli-
mate (Fig. 1). The mean annual temperature was 19.0 �C
and annual precipitation was 1394.7 mm during 1985–
2010. The forest, which was planted in 1985, is dominated
by Slash pine (Pinus elliottii), Masson pine (Pinus massoni-

ana) and Chinese fir (Cunninghamia lanceolata), with a tree
density of about 1460 stems ha�1. The eddy flux observa-
tion system has been in operation since late 2002.
s and Qianyanzhou eddy tower flux site.



Table 1
Geographic and average radiation of the six meteorological stations and eddy tower site.

Station name Latitude (�N) Longitude (�E) Sunshine duration (h day�1) Solar radiation (MJ m�2 day�1) Diffuse radiation (MJ m�2 day�1)

Shanghai 31.40 121.48 5.0 (4.0) 12.3 (7.2) 7.1 (3.4)
Wuhan 30.62 114.13 5.0 (4.2) 11.8 (7.5) 7.4 (3.7)
Nanchang 28.60 155.92 5.2 (4.4) 12.0 (7.8) N/Aa

Fuzhou 26.08 119.28 4.5 (4.0) 12.3 (7.2) N/Aa

Guangzhou 25.85 114.95 4.8 (3.7) 12.3 (5.8) 7.2 (2.9)
Ganzhou 23.17 113.33 4.4 (4.2) 11.8 (7.5) N/Aa

Qianyanzhou 26.73 115.02 4.7 (4.2) 12.1 (7.6) N/Aa

a Diffuse radiation was not observed. Values in parentheses are standard deviation.
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Daily observed GPP data was used to evaluate the
performance of LUE and BEPS models and calculated as
the summation of 30-min measurements of GPP. It equals
net ecosystem productivity (NEP) plus ecosystem respira-
tion (ER), which was estimated using air/soil temperature
and the Lloyd–Taylor equation fitted with nighttime
measured NEP (Yu et al., 2008).

2.1.3. Leaf area index used to drive models

Leaf area index (LAI) is required to drive the LUE and
BEPS models. It was inverted with the algorithm developed
by Deng et al. (2006) and the MODIS products of BRDF
(MCD 43A1) and surface reflectance (MOD 09A1). This
LAI inversion algorithm was developed based on the
Four-Scale geometrical model and was able to produce
high quality of LAI in various ecosystems (Liu et al.,
2012). The inverted LAI was further smoothed using a
Locally Adjusted Cubic-spline Capping (LACC) method
to remove the effects of residual cloud and aerosol contam-
ination (Chen et al., 2006).

2.2. Solar radiation and diffuse radiation estimation models

2.2.1. Estimation of solar radiation using sunshine duration

The Ångström–Prescott equation, which calculates Rs as
a function of the extraterrestrial radiation on horizontal
surface (R0) has been widely used (Bakirci, 2009;
Besharat et al., 2013; Liu et al., 2009b). Meanwhile, many
alternative models have been proposed for calculating Rs

based on sunshine duration measurements (Besharat
et al., 2013). Here, four commonly used models were tested:

Linear model (Ångström–Prescott model, (Prescott,
1940)):

Rs

R0

¼ a1 þ b1 �
S
S0

ð1Þ

Exponential model (Almorox and Hontoria, 2004):

Rs

R0

¼ a2 þ b2 � exp
S
S0

� �
ð2Þ

Quadratic model (Ögelman et al., 1984):

Rs

R0

¼ a3 þ b3 �
S
S0

þ c3 �
S
S0

� �2

ð3Þ

Linear exponential model (Bakirci, 2009):
Rs

R0

¼ a4 þ b4 �
S
S0

þ c4 � exp
S
S0

� �
ð4Þ

where ai, bi, and ci (i = 1, 2, 3, and 4) are coefficients, which
were fitted using Levenberg–Marquardt method (Moré,
1978). S and S0 represent sunshine duration (h) and day
length (h), respectively. Calculation of R0 and S0 can be
refer to Yorukoglu and Celik (2006) and its related
references. The best model was used to estimate Rs using
sunshine duration for Qianyanzhou site.
2.2.2. Estimation of diffuse radiation using empirical

equations

Diffuse radiation (Rd) is rarely measured, and often esti-
mated from global radiation and the fraction of Rd, which
can be estimated according to clearness index (Rs/R0), sun-
shine percentage and cloud cover (Boland et al., 2008;
Cotfas et al., 2014; Liu and Jordan, 1960; Reindl et al.,
1990; Rivington et al., 2008). Clearness index is defined
as the ratio of the daily terrestrial global radiation on a
horizontal surface to the daily extraterrestrial radiation
on that surface and correlated with daily diffuse fraction
(Liu and Jordan, 1960). In this study, three commonly used
Rd partitioning models were tested and the best-performed
model would be used for estimating Rd of Qianyanzhou
site. These models are:

Linear model (Reindl et al., 1990):

Rd

Rs
¼ a5 þ b5 �

Rs

R0

þ c5 � cosh ð5Þ

Forth power polynomial model (Erbs et al., 1982):

Rd

Rs
¼ a6 þ b6 �

Rs

R0

þ c6 �
Rs

R0

� �2

þ d6 �
Rs

R0

� �3

þ e6

� Rs

R0

� �4

ð6Þ

Logistic model (Boland et al., 2008):

Rd

Rs
¼ 1

1þ ea7þb7�Rs
R0

ð7Þ

where ai, bi, ci, di, and ei (i = 5, 6, and 7) are the coefficients
fitted using observations, h is the solar zenith angle. Rd, Rs,
and R0 represent daily diffuse radiation (MJ m�2 day�1),
daily solar radiation (MJ m�2 day�1) and daily



D. Li et al. / Solar Energy 120 (2015) 175–186 179
extraterrestrial radiation on horizontal surface
(MJ m�2 day�1), respectively.

2.3. Models used for simulating GPP

GPP at Qianyanzhou site for the period between 2003
and 2005 was simulated using the MOD17 algorithm and
the BEPS model. They were both driven by Rs (observed
solar radiation) and Rse (estimated solar radiation) along
with other meteorological inputs (including maximum
and minimum temperature, precipitation, and relative
humidity). The two models have been proved suitable for
the subtropical area (He et al., 2013).

2.3.1. LUE model

The MOD17 algorithm was taken as a representative of
LUE models. It calculates APAR on the basis of Beer’s law
(Jarvis and Leverenz, 1983) and remotely sensed LAI and
integrates the effects of minimum temperature and water
vapor deficit on light use effciency. GPP is calculated as
(Running et al., 2000):

GPP ¼ emaxf ðVPDÞgðT aÞfPAR � PAR ð8Þ
where emax is the maximum light use efficiency, f(VPD) and
g(Ta) are the scalars of vapor pressure deficit (VPD) and
the minimum air temperature (Ta), fPAR is the fraction
of PAR (photosynthetically active radiation) absorbed by
the canopy. Parameters in Eq. (8) was set following He
et al. (2013).

2.3.2. BEPS model

The BEPS model used here is a daily process-based
model (Liu et al., 1999) that computes the canopy-level
photosynthesis (Acanopy) as the sum of sunlit and shaded
leaf groups using the Farquhar’s instantaneous photosyn-
thesis model (Farquhar et al., 1980):

Acanopy ¼ AsunLsun þ AshLsh ð9Þ
where Asun and Ash are the photosynthesis rates of sunlit
and shaded leaf groups through a simplified analytical tem-
poral integration (Chen et al., 1999), Lsun and Lsh are the
sunlit leaf area and shaded leaf area. They are separated
from total LAI (L) (Chen et al., 1999):

Lsun ¼ 2 cos hð1� e�0:5XL= cos hÞ ð10Þ
Lsh ¼ L� Lsun ð11Þ
where X is the clumping index. The inputs to the BEPS
model include LAI, daily meteorological variables (maxi-
mum temperature, minimum temperature, solar radiation,
precipitation, and relative humidity), and soil texture.
Parameters here are referenced Ju et al. (2010b).

2.4. Criteria of model performance

Uncertainty was defined as the difference between model
estimates of solar radiation from sunshine duration, diffuse
radiation and GPP arising from the use of observed site
specific solar radiation data and estimated data following
Rivington et al. (2006) and Wang et al. (2015). The perfor-
mance of models was assessed using the coefficient of deter-
mine (R2), mean bias error (MBE), and root mean square
error (RMSE). They are calculated as:

R2 ¼
P

Qobs � Qobs

� �
Qest � Qest

� �� �2

P
Qobs � Qobs

� �2P
Qest � Qest

� �2
ð12Þ

MBE ¼
P
ðQobs � QestÞ

N
ð13Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ðQobs � QestÞ

2

N

s
ð14Þ

where Qobs and Qest are the observed and estimated values
for assessing Rse. In the assessment of estimated GPP and
diffuse radiation, they denote the estimates using Rs and
Rse. N is the number of observations. The t test was used
to determine if the simulated and observed Rs, Rd or
GPP were significantly different from each other at a par-
ticular confidence level.

3. Results

3.1. Characteristic of radiation in subtropical area of China

Fig. 2 demonstrates the seasonal variations of monthly
Rs, sunshine duration, Rd and clearness distribution of six
meteorological stations in southeast China. The Rs showed
single peak variation with the maximum in July and rela-
tively smooth trend of seasonal change. The maximum sun-
shine duration occurred in July consistent with that of Rs.
However, the sunshine duration showed less variation dur-
ing March–June than that of Rs, and declined obviously
from July to August. The 25th percentile values of sunshine
duration showed that there were a large proportion of days
with the sunshine duration equal to 0, especially in
non-growing season (from November to May). It indicates
that many days with different Rs could not be differentiated
by sunshine duration because of the insensitive sunshine
recorder in the subtropical area of China. The Rd showed
strongly seasonal patterns as the maximum in June. The
clearness index values had the largest frequency around
0.55. The frequency of lower clearness index that was less
than 0.2 also accounted for a higher proportion as the
rainy season was in the first half year.

3.2. Assessment of global solar radiation estimation

Parameters in four Rs estimation models were calibrated
using measures from six meteorological stations during
2000 to 2006. Table 2 shows the performance of four mod-
els to establish the relationships between Rs and sunshine
duration. The quadratic model performed best with the
lowest RMSE and the highest R2. The linear model per-
formed slightly better than exponential model. All the
models underestimated the Rs with the MBE in the range



Fig. 2. Seasonal variations of monthly mean solar radiation (a), sunshine duration (b), diffuse radiation (c), and frequency distribution of clearness index
(d) during 2000–2006 in southeast China. The boundary of boxes indicates 25th and 75th percentile, line and circle within boxes mark median and mean.

Table 2
Summary of estimated solar radiation against observed solar radiation (MJ m�2 day�1).

Model Coefficients MBE RMSE R2

ai bi ci

Linear model 0.150 0.556 – �0.062 2.292 0.898
Exponential model �0.184 0.353 – �0.081 2.566 0.873
Quadratic model 0.133 0.814 �0.317 �0.048 2.178 0.908
Linear exponential model 0.513 1.139 �0.378 �0.051 2.191 0.907
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of �0.081 to �0.048 MJ m�2 day�1. The quadratic model
and corresponding coefficients were used for obtaining
Rse at Qianyanzhou site.

The 2003–2005 daily Rse of Qianyanzhou site was com-
pared with the Rs observations from the eddy tower. The
quadratic model performed well with the values of R2

0.92 and RMSE 2.18 MJ m�2 day�1 (Fig. 3), and there
Fig. 3. Comparison between Rs and Rse at Qianyanzhou site during 2003–
2005. Dashed line shows the 1:1 line. Solid line shows the regression line.
(Rs: observed solar radiation; Rse: estimated solar radiation based on the
sunshine duration and quadratic model).
was no significant difference between two datasets accord-
ing to the t test (p = 0.074). The MBE value showed the Rse

was more serious underestimated by quadratic model at
Qianyanzhou site than in the six meteorological stations,
and presented obviously seasonal variations during 2003–
2005. The Rse was underestimated during the period of
May–October and overestimated during the period from
December to March (Fig. 4a). The RMSE of Rse was larger
in the growing season than in non-growing season. Due to
the inter-annual variation of meteorological variables, the
monthly RMSE peaked at different time during 2003–
2005. The cloudiness condition significantly impacted the
accuracy of Rse (Fig. 4b). The model overestimated Rse

during days with clearness index below 0.15 and underesti-
mated Rse on days with clearness index in the range of 0.2–
0.4 and higher than 0.6. The RMSE approached the largest
values under the conditions of clearness index about 0.35
and the least around 0.15 and 0.6.
3.3. Assessment of diffuse radiation estimation

Three Rd estimation models showed similar perfor-
mances at three meteorological stations (Shanghai,
Wuhan, and Guangzhou) with observation data during
2000–2006 (Table 3). The linear model slightly



Fig. 4. Changes of mean bias error (MBE) and root mean square error (RMSE) of Rse with months and clearness index at Qianyanzhou site. The error
bars denote the standard error of the mean.

Table 3
Summary of estimated against observed diffuse radiation (MJ m�2 day�1).

Model Coefficients MBE RMSE R2

ai bi ci di ei

Linear model 1.273 1.552 0.052 – – 0.07 1.08 0.90
Forth power polynomial model 0.680 3.465 �13.725 16.317 �7.387 �0.01 1.07 0.90
Logistic model 3.980 7.453 – – – 0.00 1.07 0.90

Fig. 5. Comparison between observations (Rd) and estimated diffuse
radiation (Rde) using the Logistic model in conjunction with Rse

(Shanghai, Wuhan, Guangzhou) during 2000–2006. Dashed line shows
the 1:1 line. Solid line shows the regression line.

Fig. 6. Comparison of estimated diffuse radiation values by Logistic with
two sources of solar radiation at Qianyanzhou site during 2003–2005.
Dashed line shows the 1:1 line. Solid line shows the regression line. (Rdo:
estimated diffuse radiation from Rs; Rde: estimated diffuse radiation from
Rse).
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overestimated Rd comparing to other two models.
Considering less coefficients of the Logistic model, it was
chosen for further analysis, i.e. to test the impact of Rse

on Rd estimation and GPP simulation. Table 3 and Fig. 5
reveal that Rse significantly impacted Rd estimation with
the R2 and RMSE changed from 0.90 and 1.07 m�2 day�1

to 0.67 and 1.94 MJ m�2 day�1, when Rs was substituted
by Rse. The t test indicated there was significant difference
between the two mean values of Rd and estimated Rd from
Rse (Rde) (p < 0.01). The scatter plot shows that Rde was
overestimated for lower Rd and underestimated for higher
Rd, and with an overall overestimation 0.21 MJ m�2 day�1

(Fig. 5).
Rd was calculated based on Rs and Rse to clarify the dif-

ferences between two sources of solar radiation based esti-
mation at Qianyanzhou site during 2003–2005. Due to lack
of Rd observation data, the Rd calculated from Rs (Rdo) was
treated as truth. Rde could explain 81% variation with the
MBE and RMSE values of 0.15 and 0.73 MJ m�2 day�1

(Fig. 6). Rde was overestimated under low Rd and underes-
timated under high Rd comparing with Rdo, and there were
many deviations points during all Rd ranges. The t test indi-
cated the two sources of data was significantly different
(p < 0.01). Most months’ Rde was overestimated with the
peak occurred in spring during 2003–2005 (Fig. 7). The
MBE change trend of Rde was consistent with that of
Rse. However, it should be noted that a serious underesti-
mation in Rse did not definitely induced an underestimation
in Rde, e.g. April in 2003. RMSE was higher in the first half
year and was relative higher in 2003 and 2005. Rde was
overestimated under the condition of clearness index less
than 0.15 and larger than 0.6, and was underestimated in
the range of 0.2–0.55. Both maximum MBE and RMSE
occurred under the case of extreme low clearness index.



Fig. 7. Comparisons of estimated diffuse radiation (Rde VS. Rdo) from two sources of solar radiation (Rs and Rse) with months and clearness index. The
error bars denote the standard error of the mean. (Rdo was taken as the truth due to lack of observed diffuse radiation).
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3.4. Impact of estimated solar radiation on GPP simulation

Compared with the estimated GPP (GPPe) based on
eddy tower measurements, the simulated GPP (GPPs)
driven by Rs with the BEPS model exhibited best
performance with the lowest RMSE and the highest R2

(Fig. 8). The BEPS model driven by Rse performed even
better than that of LUE model driven by Rs as indicated
by lower RMSE and higher R2. However, the GPPs from
BEPS model was considerably overestimated comparing
with that of LUE model indicating by the MBE values, and
the Rse intensified this overestimation with the relative
MBE increased from 3% to 6% in BEPS model. Rse led
to higher RMSE and lower R2 in both LUE model and
BEPS model. The t test showed significant difference
between GPPs driven by Rs and Rse at the confidence level
of 0.05 (p = 0.019) for LUE model, and significant
difference at the confidence level of 0.01 (p < 0.001) for
BEPS model.

For the LUE model, difference between two GPPs data
(driven by Rs and Rse) was directly related to the difference
Fig. 8. Validation of GPP simulations driven by the observed solar radiation (R
Qianyanzhou eddy tower site. (a) and (b) are LUE model driven by Rs and Rse;
line. Solid lines show the regression line. (GPPs: simulated GPP by LUE and
of Rs and Rse due to the linear algorithm in the model. The
GPPs driven by Rse shows more frequent overestimation
during non-growing season (November–April) and
more frequent underestimation in growing season
(May–October) than that driven by Rs (Fig. 9a). The
MBE values ranged from �0.81 g C m�2 day�1 (relative
MBE �11.23%, in June 2003) to 0.51 g C m�2 day�1

(relative MBE 9.68%, in April 2005). The RMSE ranged
from 0.39 g C m�2 day�1 (relative RMSE 48%, in January
2005) to 1.32 g C m�2 day�1 (relative RMSE 18%, in
June 2003). The differences between two GPPs data from
LUE model were closely related to atmospheric conditions.
The GPPs driven by Rse was underestimated comparing
with that of Rs when the clearness index was larger than
0.15. The minimum difference existed during days with
the clearness index in the range of 0.35–0.55 (Fig. 9c).
The largest difference occurred in days when the
clearness index was larger than 0.7 with the MBE
�0.95 g C m�2 day�1 (relative MBE �12%), and the lar-
gest RMSE 1.54 g C m�2 day�1 (relative RMSE 34%)
when the clearness index was in the range of 0.35–0.4.
s) and estimated solar radiation (Rse) with LUE model and BEPS model at
(c) and (d) are BEPS model driven by Rs and Rse. Dashed lines show the 1:1
BEPS models; GPPe: estimated GPP from eddy tower measurements).



Fig. 9. Comparison of GPP simulated by LUE and BEPS model using observed solar radiation (Rs) and estimated solar radiation (Rse). (a) and (b) are
changes of MBE and RMSE for LUE model and BEPS model with months, respectively, (c) and (d) are changes of MBE and RMSE for LUE model and
BEPS model with clearness index, respectively. The error bars denote the standard error of the mean.
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Rse had different impacts on GPPs in BEPS model com-
paring with that of LUE model. The time of the largest
difference in two GPPs sets was in late spring and early sum-
mer with the GPPs driven by Rse always being larger than
that of Rs (Fig. 9b). The MBE values ranged from
�0.53 g C m�2 day�1 (relative MBE �6%, in June 2003)
to 0.67 g C m�2 day�1 (relative MBE 20%, in March
2003). The RMSE values ranged from 0.26 g C m�2 day�1

(relative RMSE 19%, in January 2004) to
1.35 g C m�2 day�1 (relative RMSE 16%, in June 2003).
Rse induced much difference in the daily GPPs when the
clearness index was less than 0.1 with MBE and RMSE val-
ues of larger than 0.99 g C m�2 day�1 (relative MBE > 52%)
and 1.16 g C m�2 day�1 (relative RMSE > 62%) (Fig. 9d).
Days when the clearness index was in the range of 0.22–
0.55, GPPs driven by Rse was underestimated with MBE
ranged from �0.04 g C m�2 day�1 to �0.35 g C m�2 day�1

(relative MBE �0.7% to 10%) and RMSE ranged from
0.11 g C m�2 day�1 to 1.35 g C m�2 day�1 (relative RMSE
2–22%). When the clearness index was large than 0.60, the
Rse-based GPPs was overestimated comparing with that of
Rs although Rse was underestimated.

4. Discussion

4.1. The performance of sunshine duration based radiation

estimation

Rs is the mainly limitation of photosynthesis in subtrop-
ical area of China, where is characterized by wet and warm
summer and dry and mild winter with complex aerosol–
cloud–precipitation interactions. The heavy clouds, aerosol
and frequent rainy days considerably influence the
radiation estimation quality as the sunshine recorder is
insensitive to the low radiation and the actual threshold
depends on the humidity of the recording card (Besharat
et al., 2013; Suehrcke et al., 2013). Previous study also
found that various radiation products including reanalysis
data (MERRA, ECMWF, NCEP) and satellite-derived
products (GLASS, ISCCP) showed low correlation and
large product errors in south China, resulting in large
uncertainties in the GPP simulations driven by those data
(Cai et al., 2014). The R2 values of Rse in this study were
higher than that reported by Liu et al. (2009b) based on
sunshine duration with the R2 varied between 0.61 and
0.89 with an average of 0.82 among 31 stations in China.
The non-systematic estimation error expressed in terms of
RMSE at Qianyanzhou site was 2.18 MJ m�2 day�2 (rela-
tive RMSE 20%), within the range reported by Supit and
Van Kappel (1998), i.e. 1.4–5.0 MJ m�2 day�2, but a little
higher than reported by Trnka et al. (2005) with the
RMSE values between 1.4 and 1.8 MJ m�2 day�1 (13.0–
17.9%).

The widely and long-time availability of sunshine dura-
tion plays an irreplaceable role in validating radiation
products and identifying historical impacts of changing
radiation on carbon budget. Many studies considered the
uniform systematic error in input Rse to study their impacts
on terrestrial ecosystem carbon simulation (Feng et al.,
2007; Yan et al., 2011). In reality, the error of Rse varies
greatly during individual months (even days) depending
on the study area and cloud cover conditions. According
to our test, Rse was overestimated during non-growing sea-
son with lower clearness index days and underestimated
during the growing season with higher clearness index
days. This was also observed in Czech and Austria by
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Trnka et al. (2007) and Trnka et al. (2005), which showed
the Rse yielded a relative MBE of more than 15%, and
showed an obviously overestimated Rse in November,
December and January (by 10–20%). These inaccuracies
in the Rse could be attenuated or multiplied owing to the
different distribution characteristic of clearness index in dif-
ferent seasons.

The error in Rse had direct impact on diffuse radiation
estimation, and induced considerable difference between
two Rd data estimated from Rse and Rs. Although a logistic
relationship between diffuse radiation fraction and
clearness index could be established, Rse led to the R2

and RMSE of the estimated Rd from 0.90 and
1.07 MJ m�2 day�1 to 0.67 and 1.94 MJ m�2 day�1, imply-
ing that the quality of solar radiation had serious impact
on Rd estimation. The relationship between Rd and sun-
shine duration can be directly established, and might
improve the Rd estimation (Suehrcke et al., 2013).
However, this is out of our scope as many ecosystem mod-
els only take Rs/Rse as input data, and here we focused on
the error propagation of Rse to Rd and GPP estimation.
The changes of Rs, Rb and Rd with clearness index accord-
ing to the established logistic relationship can clearly depict
the error propagate process (Fig. 10). Under constant solar
radiation at the top of the atmosphere, overestimated Rse

leads to an overestimation in both Rde and Rb when the
clearness index is low (<0.43), and the underestimated
Rse causes an overestimation in Rde and underestimation
in Rb when the clearness index is high (>0.43). Therefore,
the MBE of Rde is consistent with that of Rse when the
clearness index is less than 0.43, but become inconsistent
when the clearness index is larger than 0.43.
4.2. Impacts of estimated radiation on GPP simulations

The impacts of Rse on GPPs varied in LUE and BEPS
models due to the different algorithms between Rs and pho-
tosynthesis. For LUE model, GPP has linear relationship
with Rs and the error of Rse directly propagates into GPP
simulation. In the case of BEPS model, the error in Rse
Fig. 10. Changes of solar radiation at the surface (Rs), direct radiation
(Rb) and diffuse radiation (Rd) with clearness index (Rs/R0) under the
condition of solar radiation at the top of the atmosphere (R0) equal to
40 MJ m�2 day�1.
has complicated impacts on GPPs because the sunlit and
shaded leaves react differently to Rs variations under vari-
ous sky conditions (Knohl and Baldocchi, 2008; Mercado
et al., 2009). Ecosystem models that include multilayer
canopies can capture the response of ecosystems to diffuse
light (Alton et al., 2007). Recently, a two-leaf LUE model
had been developed to improve the calculation of GPP
under different sky clearness conditions (He et al., 2013).
These models are strongly sensitive to small changes in
incident radiation and uncertainties in radiation products,
especially in these subtropical areas under frequently
low-radiation conditions.

Our results show that the impact of Rse on GPPs is
mainly consistent with that on Rde for the BEPS model.
According to the established relationship between Rd and
Rs, the underlying mechanism can be understood: under
extremely low clearness index conditions (<0.15), both sun-
lit and shaded GPPs are overestimated because of the over-
estimated Rse induces the Rb and Rd overestimated. When
the clearness index is in the range of 0.15–0.43, both sunlit
and shaded GPPs are underestimated due to the reduced Rd

and Rb accompanied by underestimated Rse. When the
clearness index ranges from 0.43 to 0.55, the overestimated
Rse leads to Rde underestimated and Rb overestimated, and
results in shaded GPPs underestimated and sunlit GPPs

overestimated. Under extremely high clearness index
(>0.55), the shaded GPPs is overestimated because of the
overestimated Rde accompanied by the underestimated
Rse. Radiation variations on sunlit leaves do not initially
result in a substantial change in leaf level photosynthesis
as their radiation saturated. Shaded leaves, however, oper-
ate on the linear part of the light response curve and there-
fore respond sensitively to radiation uncertainties (Knohl
and Baldocchi, 2008). As a result, errors in Rse would have
more significant impact on shaded leaves and definitely
influence the shaded GPPs and total GPPs.

5. Conclusions

While estimated daily solar radiation from sunshine
duration data were widely used to simulate carbon budget
in many ecosystem models, the impacts of its potential
inaccuracy on GPP in forest ecosystem were rarely investi-
gated. Results of this study executed in a subtropical plan-
tation of China revealed (1) that estimated daily solar
radiation from sunshine duration did not show significant
difference with observed solar radiation; (2) calculated dif-
fuse radiation based on estimated solar radiation is signif-
icantly different with that of observed solar radiation; (3)
simulated daily GPP driven by estimated solar radiation
is significantly different with that of observed solar radia-
tion driven. The mean bias error ranges from �11% to
10% for LUE (big-leaf) model, and from �6% to 20% for
BEPS (two-leaf) model depending on the month of a year.
Our results also indicate that error in estimated solar radi-
ation might aggregate or counteract for GPP simulation in
different models and time scales. The estimated solar
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radiation from sunshine duration could partly conceal the
underestimation and overestimation of GPP under extreme
low and high clearness index, which is common in many
LUE-based GPP models. In the case of BEPS model, the
overestimation under low clearness index and underestima-
tion under high clearness index both induced overestima-
tion of diffuse radiation, and induced an overestimated
GPP. Therefore, cautions should be taken when estimated
solar radiation is used for site-specific ecosystem model cal-
ibrations or simulating the impacts of changing solar radi-
ation on carbon budget. There is a great need for further
research aiming at the development of more precise method
to estimate solar radiation and diffuse radiation for these
extremely high/low clearness index days in subtropical
areas.
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