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SUMMARY

When the atmospheric turbulent flux of a minor constituent such as CO; (or of water vapour as a
special case) is measured by either the eddy covariance or the mean gradient technique, account may need
to be taken of variations of the constituent’s density due to the presence of a flux of heat and/or water vapour.
In this paper the basic relationships are discussed in the context of vertical transfer in the lower atmosphere,
and the required corrections to the measured flux are derived.

If the measurement involves sensing of the fluctuations or mean gradient of the constituent’s mixing
ratio relative to the dry air component, then no correction is required ; while with sensing of the constituent’s
specific mass content relative to the total moist air, a correction arising from the water vapour fiux only is
required. Correspondingly, if in mean gradient measurements the constituent’s density is measured in air from
“different heights which has been pre-dried and brought to a common temperature, then again no correction
is required ; while if the original (moist) air itself is brought to a common temperature, then only a correction

' rising from the water vapour flux is required.

If the constituent’s densiry fluctuations or mean gradients are measured directly in the air i situ, then

corrections arising from both heat and water vapour fluxes are required.

~ These corrections will often be very important, That due to the heat flux is about five times as great as
that due to an equal latent heat (water vapour) flux. In CO, flux measurements the magnitude of the correc-
tion will commonly exceed that of the flux itself. The correction to measurements of water vapour flux will
often be only a few per cent but will sometimes exceed 10 per cent. . e
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Sonic temperature (T)

) I’ Air temperature
C y  Ratio of moist air specific heat between constant
= — pressure and constant volume
/4 R R gas constant of moist air
C 2 ¢ Speed of sound
T = y; ratio of dry air specific heat between constant
5 7/d Rd pressure and constant volume (1.400279)

R, gas constant of dry air (287 J K-! kg!)

1. of moist air 1s 7 that its dry air component can reach
at the same enthalpy as the moist air has (Zhou et al., 2022)
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Abstract, The possibility of measuring heat and moisture fluxes using sonic anemometer data is investigated,
Theoretical refations for the temperature variance and heat flux ure derived. In the first part of this paper,
these relations are verified by experimental data, involving a sonic anemometer, a fast thermocouple and
a Lyman-z hygrometer. In the second part we propose two simple procedurss to estimate heat fux from
somic anemometer data. The first one requires a rough estimate of the Bowen ratio; for the second one the
net radiation is needed. Using the last method, a good estimate of the moisture flux iz also obtained.

1. Introduction

The measvrement of the turbulent fluxes of momentum, heat and moistare is an
important objective in experimental boundary-layer research. For these measurements,
the sonic anemometer has become an important research tool {Kaimal, 1979). Sonic
anemometers have been used in many experiments for the measurement of wind velocity
fluctuations (Haugen er al., 1971; Kaimal et al., 1976): modern sonic anemometers also
provide temperature measurements, but these are seldom used for flux computations
{Kammal, 1969; Friche, 1976).

In this paper we explore the merits of the sonic anemometer for the measurement of
temperature fluctuations. For that reason we conducted a field experiment in the
summer of 1981 near the meteorological mast at Cabauw, the Netherlands. Apart from
a somic anemometer, we employed a fast thermocouple and a Lyman-x hygrometer.
With this array of instruments, we could measure the three vertical turbulent fluxes:
maomentum, heat and moisture,

The first problem that we were faced with, mvolved errors in the velocily measure-
ments due to flow distortion by the sonic anemometer, These errors are caused by the
wake of the sound transducers, and result in an underestimation of the wind velocity
(Kaimal, 1979; Wyngaard, 1981). They are usually neglected. Here, we have used a
calibration curve to correct for this problem.

Subsequently, we mvestigated the use of a sonic anemometer Lo measure temperature
variance and heat flux. This possibility has not been explored much until now. However,
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Relationship of 7, to 7'in OPEC systems
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Moisture correction for 7, flux to be sensible heat flux
for open-path eddy-covariance systems

van Dijk, A. 2002.
The Principles of Surface Flux Physics, Dept of Meteorol and Air
Quality, Agr. Univ. Wageningen, 40—41 pp.
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Relationship of 7 to 7, and H,O mixing ratio (XH2O)
for closed-path eddy-covariance systems
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Zhou, XH, T Gao, ES Takle, XJ Zhen, AE Suyker, T Awada, J Okalebo, JJ Zhu. 2022. Air temperature equation derived from
sonic temperature and water vapor mixing ratio for boundary-layer flow through closed-path eddy-covariance flux systems.
Atmos Meas Tech 15: 95115, https://doi.org/10.5194/amt-15-95-2022.



Moisture correction for 7, flux to be sensible heat flux
for closed-path eddy-covariance systems
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Error due to differing
frequency responses
for cospectra of
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Magnitude in WPL correction
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