黑河流域地表过程综合观测网

北京师范大学地理科学学部 地表过程与资源生态国家重点实验室 2018年7月19日

一、研究背景

- 二、最新进展
- 三、主要结论

研究背景

地表过程(陆表过程)是地理学的研究对象,是一个地 理综合体,由大气圈、水圈、岩石圈、冰雪圈和生物圈相互 作用、相互渗透而形成。从整体出发,深入认识与理解陆表 过程中水、土、气、生、人相互作用具有重要意义。

为改善对陆表过 程的认识与理解,需 要在全球不同的气候 区进行全面系统的、 国际合作的、大型的 野外观测试验。

自20世纪80年代以来,在水文-大气试点试验 (HAPEX)、国际地圈-生物圈计划(IGBP) 世界气候研究计划(WCRP)的"全球能量和水 循环试验(GEWEX)"、国际卫星-陆面-云研究 计划(ISLSCP)等研究项目的协调与组织下, 以全球大气环流模式(GCM)网格为基本尺度, 在世界不同地区进行了一系列大型的野外试验。

国际上大型野外试验

我国的陆表过程试验研究居于世界前列。自上 世纪80年代末开始,国内陆续在西北干旱区、青 藏高原区、东部季风区和农牧交错带开展了"黑 河地区地气相互作用野外观测试验" (HEIFE)、"青藏高原试验" (GAME-Tibet)、"淮河试验" (GAME-HUBEX) 和 "内蒙古半干旱草原土壤—植被—大气相互作用" 试验 (IMGRASS)。

国内大型野外试验

全球通量观测网络

- □ 20世纪90年代末全球通量观测网络(FLUXNET)成立,实现 从单站观测到多站点联网、长时间连续观测的转变。
- □包括北/南美洲、欧洲、亚洲、大洋洲、非洲等区域,涵盖 森林、农作物、草原、丛林、湿地、苔原等下垫面类型。

截止2017年2月总计注册站点达到914个,7479站年。

流域观测系统

过去10年来,以流域为单元建立分布式的观测系统蔚然成风。

推进水文科学大学联盟的水观测网 CUAHSI WATERS Network

- 大型野外试验主要是在局地精细观测研究的基础上,由点及面,为区域尺度即GCM网格点提供有代表性的陆面过程参数化方案----某个典型区域、短期;
- 全球通量观测网络主要是测量地气之间碳、水、能的交换, 并为NPP、ET、FPAR等遥感产品提供验证数据一多站点、 长期、松散联盟;
- 多变量、多尺度的观测;传感器网络的应用;观测平台与信息系统的结合是流域观测系统的共同特征一多站点、长期、优化设计;
- 强调模式发展与观测(地面+卫星遥感)数据及分析结合;
- 卫星遥感数据,尤其是航空遥感是进行尺度转换的桥梁。

黑河流域位于中国西部干旱半干旱区,是我国第二大内 陆河流域(948km),流域面积约14.3万km²。从上游(青海 祁连)到中游(甘肃张掖)、下游(内蒙古额济纳旗),随 着海拔高度(2000-5000、1000-2000、800-1000m)的降低, 气温(1.5-2.0、2.8-7.6、8℃)、降水量(250-500、100-250、 <50mm)呈现明显地带性。

海拔高度

气温(2012-2015年)

降水(2012-2015年)

黑河流域的景观地带 性也十分明显,从上游 到中、下游,以水为纽 带,形成了"冰雪/冻 土一森林一草原一河流 一绿洲(农田+防护林、 河岸林) 一沙漠一戈壁 一湖泊"的多元自然景 观。

黑河流域处于丝绸之路经济带的核心地段,向西有塔里木河流域和 中亚的阿姆河流域等内陆河流域,因此黑河流域的观测与研究成果对 "一带一路"乃至泛第三极地区上的内陆河具有很高的借鉴和推广应用 价值。

祁连山国家自然保护区六大流域,其中黑河流域是最大的一个流域。

黑河流域内寒区和干旱区并存,山区冰冻圈和极端干旱 的河流尾闾地区形成了鲜明对比,是开展<mark>陆表过程观测与科</mark> 学研究的理想场所。

二、最新讲展

黑河流域地表过程综合观测网始建于2007 年开始的"黑河综合遥感联合试验" (WATER, 2007-2011): 在国家自然科学 基金重大研究计划"黑河流域生态一水文过 程集成研究"框架下,建成于2012年启动 的"黑河流域生态-水文过程综合遥感观测 联合试验"(HiWATER, 2012-2015)。

Liu Shaomin, Li Xin, Xu Ziwei et al., Vadose Zone Journal, under review.

北京师范大学地理科学学部与中国科学院西北生态环境资源 研究院在2007-2016年期间共同构建与运行了黑河流域地表过程 综合观测网,2017年6月5日北京师范大学与中国科学院西北生 态环境资源研究院正式签署协议,共建该综合观测网,9月14 日举行了揭牌仪式。

综合观测网的定位

1、构建国际领先的多要素-多尺度-网络化-立体-精细化 的流域综合观测系统,显著提升对流域地表过程的观 测能力;

2、建设寒旱区典型下垫面像元尺度的遥感试验场,形成从单站到航空像元到卫星像元尺度转换的综合观测能力;

3、长期开展地面与遥感结合的综合观测,积累长时间 序列观测数据集,服务于寒旱区流域地表过程集成研究,增强遥感在流域地表过程集成研究和水资源管理中的应用能力。

专题试验—2012年非均匀下垫面地表蒸散 发的多尺度观测试验

- 长期观测平台一水文气象观测网、生态水 文无线传感器网络、卫星遥感
- 观测系统的运行与维护
- 数据共享和产出

1.2012年非均匀下垫面地表蒸散发的多尺度观测试验 1)通量观测矩阵

在2012年5-9月开 展了HiWATER专题 试验一非均匀下垫 面地表蒸散发的多 尺度观测试验:通 量观测矩阵。该试 验在黑河流域中游 张掖地区构建 30km \times 30km 5.5km×5.5km两个 嵌套的通量观测矩 阵。

通量观测矩阵(2012.5-9)

Liu Shaomin, Xu Ziwei, Song Lisheng, et al., Agricultural and Forest Meteorology, 2016, 230-231, 97-113.

在黑河中游张掖地区 设置30km×30km的大 矩阵,包括:张掖绿洲 内的1个超级站、绿洲 周围的4个普通站。 主要用于监测绿洲-荒漠系统的水热交换特 征及其平流影响等。

30km×30km 的大矩阵

5.5km×5.5km的小矩阵

在中游绿洲内(盈 科灌区与大满灌区)构 建 5.5km×5.5km 的 小 矩阵。根据作物结构、 防护林朝向、村庄、渠 道与道路分布、土壤水 分与灌溉状况等将矩阵 区域分成17个小区。 主要用于捕捉绿洲 灌区地表蒸散发的时空 异质性、研究像元尺度 蒸散发的获取方法等。

Li Xin, Liu Shaomin, Xiao Qing, et al., Scientific Data, 2017, 4: 170083. doi:10.1038/sdata.2017.83

5.5km×5.5km小矩阵的仪器布设图

1、每个小区(17)架设一 套涡动相关仪和自动气象站---观测小区地表通量与水文气象 要素;

2、在5.5×5.5km矩阵中心 3×3MODIS像元区域,各布 设一组大孔径闪烁仪 LAS1\2\3,贯穿3×1像元 (33.45米),另有一组LAS4 横跨超级站所在的 2×1MODIS像元(22.45米) ---观测MODIS像元水热通量; 3、在测点6、8、17附近各 设置了一组TDP(热扩散茎流 计)---观测不同高度与胸径防 护林蒸腾量:

4、在超级站所在MODIS像 元布设2套宇宙射线土壤水分 仪—观测像元尺度土壤水分; 5、在超级站附近布设了一 套同位素的原位观测系统----土壤蒸发与作物蒸腾的拆分。

2) 无线传感器网络(WSN)

Jin Rui, Li Xin, Yan Baoping, et al., IEEE Geoscience and Remote Sensing Letters, 2014, 11(11), 2015-2019.

3) 地面同步观测

1、航空定标,涉及 GPS探空、差分GPS、 土壤水分的卫星与航 空飞行时同步观测、 地表温度同步观测 (水体、屋顶、果园 与荒漠等)等。 2、地基遥感,包括 BRDF、地物光谱、 比辐射率与植被覆盖 度等。

4) 航空遥感试验

从2012年6月29日开始,至8月 底,获取了黑河流域上、中游的成 像光谱、多角度的可见光与红外传 感器(CASI、TASI、WIDAS)、以及 激光雷达(LIDAR)、微波辐射计 (PLMR)的机载数据。 2014年7月29日和8月4日在下游 额济纳旗飞行,包括激光雷达、高 光谱成像仪、多波段相机、热像仪。

2014年10月1、2日在上游祁连 山飞行,涉及激光雷达、CCD相机。

WIDAS

CASI

PLMR

LiDAR

土地利用图

反照率(5m)

地表温度(3m)

LiDAR反演的DEM(1m)

叶面积指数(1m)

土壤水分(700m)

2012年中游试验期间航空遥感产品

2014年下游额济纳旗的红外数据(1m)

2、长期观测平台

2.1 水文气象观测网

水文气象观测网始建于2007年(3个观测站), 2013-2015年期间有23个观测站点(3个超级站和20个 普通站),覆盖了黑河流域上、中、下游主要下垫面 类型。2016年起,精简与优化为11个观测站(3个超级 站和8个普通站)。

Li Xin, Cheng Guodong, Liu Shaomin, et al., Bulletin of American Meteorological Society, 2013, 94(8): 1145-1160. Liu Shaomin, Xu Ziwei, Wang Weizhen, et al., Hydrology and Earth System Sciences, 2011, 15(4), 1291-1306. Li Xin, Li Xiaowen, Li Zengyuan, et al., Journal of Geophysical Research- Atmospheres, 2009, 114, D22103.

20 18 17 Z 42° N 420 19% 四道桥超级站 41° N 41° N 39° N 39° N 13 大满超级站 1514 阿柔超级站 0 20 40 80

超级站

四道桥超级站

大满超级站

阿柔超级站

下

游

中

游

F

游

102° E

 近期
 通感站
 0
 20
 40
 80
 120
 160
 7
 4
 102° E

 98° E
 99° E
 101° E
 102° E

中

游

6

F

游 9

The states

下

游

5

1) 通量与水文气象要素

上游水文气象观测网(1个超级站、3个普通站),涵盖高山山 地草甸、高寒草甸等下垫面类型。

中游水文气象观测网(1个超级站、3个普通站),涵盖了农田、 湿地、荒漠下垫面类型。

下游水文气象观测网(1个超级站、2个普通站),涵盖了柽柳, 胡杨和荒漠下垫面类型。

超级站

蒸渗仪-涡动相关仪-大孔径闪烁仪,单点土壤水分(TDR)-宇宙射线仪-土壤温湿度无线传感器网络等通量、土壤水分多尺 度观测系统以及气象要素梯度观测系统等。

地表通量与水文气象要素多尺度观测系统

大满超级站(40米铁塔):

1套气象要素梯度观测系统:7层气温、湿度、风速与风向、CO₂浓度与水汽密度(3、5、10、15、20、30、40m)、四分量辐射(12m)、光合有效辐射(12m)、红外辐射温度(2个,12m)、气压、降水量、土壤热通量(3块、6cm)、土壤温湿度廓线(0、2、4、10、20、40、80、120、160cm)、平均土壤温度(2、4cm)等;1套涡动相关仪(4.5m)。

1套大孔径闪烁仪以及宇宙射线仪、蒸渗仪以及土壤温湿度无线传感器网络等

普通站

普通站由涡动相关仪、自动气象站等构成。

花寨子普通站(10米铁塔):

2层气温、湿度(5、10m) 2层风速(5、10m)、风向(10m) 四分量辐射(6m) 红外辐射温度(2个,6m) 气压、降水量 土壤温湿度廓线(0、2、4、10、 20、40、60、100cm) 土壤热通量(3块、6cm)等;

1层涡动相关仪(4.5m)。

花寨子站10米塔

2) 径流

2012年-2015年在213国道黑河桥、312国道黑河桥、兰新铁路桥、乌江桥、板桥、高崖水文站、平川桥、高台桥8个水文断面监测黑河中游各断面流量变化过程(河流水位和流速)。

3) 积雪和冻土(2012.10-)

上游建有积雪和冻土观测系统,垭口站建有积雪观测系统、 阿柔超级站设有土壤温湿度观测系统(0、2、4、6、10、15、 20、30、40、60、80、120、160、200、240、280、320cm)、 土壤水势和导热率(4、10、20、40、80、120 cm)、雪深、宇 宙射线土壤水分以及标准的雨雪量计。

上游垭口站积雪观测系统 (降雪、风吹雪、雪升华、雪水当量、积雪深度等)

阿柔超级站土壤温湿度、导热率、水 势、雪深、宇宙射线及雨雪量计。 4) 其它参数(2013.8-)

在下游四道桥站与混合林站胡杨上安装有植物液流仪(TDP) 的观测(胡杨树蒸腾量),并且有针对胡杨林土壤水分廓线的 观测(2、4、10、20、40、60、100、160、200、240),针对 胡杨与柽柳的地下水位观测。

2018年在黑河流域上、中、下游典型观测站点安装了物候相机, 大满与四道桥超级站安装了叶面积指数自动观测系统(LAInet)。

物候/

覆盖

度观

测

大满超级站安装了15个节点,四道桥超级站安装了9个节点。

2.2 生态水文无线传感器网络(2013.6-)

在黑河上游八宝河子流域内(2537km²),布设40套 WATERNET土壤水分无线传感器网络节点,主要观测高寒草 地、农田和裸地的4cm、10cm及20cm土壤温度和水分。

上游八宝河流域无线传感器网络

2.3 卫星遥感

全球遥感产品空间分辨率多大于1km,时间分辨率多为8天、16天或更低。因此生产了黑河流域9类关键生态-水文变量的遥感产品(植被类型/ 土地覆被、物候期、植被覆盖度、NPP、叶面积指数、积雪面积、土壤 水分、降水、蒸散发)。空间分辨率多为1km或优于1km;时间分辨率 上,积雪面积、土壤水分、地表蒸散发产品为逐日。

产品名称	空间分辨率	时间分辨率	完成情况
植被类型/土地覆 被	30 m	1月	2011~2015年
物候期	1 km	6幅/1个生长期	2012~2015年
植被覆盖度	30m, 250m, 1km	5天、16天、1月	2011~2015年
NPP	1 km	5天	2012~2015年
叶面积指数	30m, 1 km	5天、1月	2010~2015
积雪面积	500 m	1天	2000~2015年
土壤水分	1 km	1天	2008~2015年
降水	0.05 度	1小时	2000~2015年
蒸散发	1km	1天、1月	2000~2016年

3、观测系统的运行与维护

3.1 观测仪器的比对与标定

在观测系统布设之前,首先对所用仪器进行比对与标定。 如地表通量观测仪器(涡动相关仪、大孔径闪烁仪、辐射仪 等)、多层风温湿传感器与土壤水分探头等。

- 中游巴吉滩戈壁地表通量仪器的比对试验;
- 下游灌丛地表通量仪器的比对试验;
- 其它传感器比对与标定试验(风温湿、土壤水分、降水等传感器)

地表能量通量观测仪器比对试验 在张掖市城西巴吉滩开展 (100°18′15.17″ E; 38°54′53.87″ N)。 选取比较平坦、320m×606m区域 作为比对场,包括18台辐射仪,20 台涡动相关仪(EC),7台大孔径闪 烁仪(LAS)。 比对时间: 2012年5月14-24日。

仪器比对场

Xu Ziwei, Liu Shaomin, Li Xin, et al., Journal of Geophysical Research-Atmospheres, 2013, 118, 13140-13157.

辐射仪、涡动相关仪和大孔径闪烁仪的比对试验

EC

LAS

辐射仪-6台 (CNR4-5台, CM21-1台)

5'13.36" N)

涡动相关仪-6台 (CSAT3&Li7500-4台, CSAT3&Li7500A-1台, CSAT3&EC150-1台)

大孔径闪烁仪-2台 (BLS900-1台, LAS-K&P-1台)

风温湿、降水、土壤水分等传感器比对与标定

风温湿传感器比对

降水比对观测 (中游上头闸村、大满站) 土壤水分传感器 比对与标定 涡动相关仪(CO₂/H₂O) 的标定

3.2 观测系统的维护

观测数据的传输与管理

数据综汇系统

观测网的维护

4、数据共享和产出

在"黑河计划数据管理中心"、寒区旱区科学数据中心上发布 中文数据集783个(HiWATER: 356; WATER: 427)、英文数 据集514个(HiWATER: 214; WATER: 300)。中游试验数据 已在Nature开源期刊Scientific Data发表。为10000多人次提供 19.9TB的数据服务,支持各类科研项目470多个。开创了国内科 学数据共享的新模式,被认为"改变了数据共享的文化"。

其他 回车打

黑河计划数据管理中心 (http://www.heihedata.org)

寒区旱区科学数据中心 (http://westdc.westgis.ac.cn/haihe)

英文数据网址 (http://card.westgis.ac.cn/hiwater)

第三十二章 第三十二章 第三十二章 第三十二章 第三十三章 第二十三章 第二一,第二十三章 第二一 [1] [1] [1] [1] [1] [1] [1] [1] [1] [1]	数据管理 基金委员会	里中心 会-重大计划	(H	全波搜索		Q搜索	
WestDC 首页	数据产品	数据评审 数据作	F者 知识积累	新闻动态	关于本站		▲登录 注册
▲ / 数据产品与服务 / 黑	河生态水文	運感试验					
黑河生态水文運感试验		HiWAT		里河济	[水文过程综	合谣感观测
航空遥感数据	+	联合は	验	MUL 1 01			
航空遥感产品	+						
流域水文气象观测网	=	A LOW TOWNING TO A					
2012	+		H1	WAI	ER		
2013	+	A WWATER	Heihe \	Watershed A	Illied Telemetry E	xperimental Research	
2014	+						
2015	+	"黑河流域生 Experimental Re	态-水文过程综合 esearch,简称H	i遥感观测联合ii liWATER),是	【验"(简称"黑河生态水 围绕基金委"黑河流域生	文遥感试验",英文名称Heihe :态-水文集成研究"重大研究计:	·Watershed Allied Telemetry 划中的核心科学目标,以黑河
2016	+	流域已建立的观测 于2012~2015年	则系统以及2007 F在黑河流域开展	~2009年开展的 第10一次卫星和船	fr黑河综合遥感联合试 空谣感及地面观测互相	检"成果为基础,联合多学科、 1配合的多尺度综合观测试验。	多机构、多项目的科研人员,
定标与真实性检验观测试验	÷						
生态水文无线传感器网络	+	试验的总体 研究和水资源管理	目标是显著提升》 理中的应用能力。	对流域生态和水) 。	之过程的观测能力,建	立国际领先的流域观测系统,技	是高遥感在流域生态-水文集成
非均匀下垫面地表蒸散发的 观测试验	够尺度 +	:=\\ _ ==	₩₩	四河法城中大一	*****		
卫星遥感数据		号: 91125001、 研究与应用试验	安里八明九时刻 91125002、91 (KZCX2-XB3-1	黑河流域主感 125003、9112 15)联合资助。	小文/04年第1466元 里点 5004)"和中国科学院配 此外,国家高技术研究	(项目针 黑河流域主芯 小叉短 5部行动计划三期项目"黑河流! 发展计划(863)重大项目"晕:	程综合區廠观测试验(项目 或生态-水文遥感产品生产算法 机地综合定量谣感系统与应用
卫星遥感产品	+	示范(一期)"课 息基础设施建设:	题"遥感产品真实 和应用示范工程"	2性检验关键技术 课题"黑河流域4	《及其试验验证》(2012 态水文谣感-地面观测	AA12A305)和国家发改委项目 III1號与综合模拟应用示范"资目	目"基于下一代互联网的科研信 助了无线传感器网络建设和部分
试验文档		航空遥感架次。					
其他导航方式	+	试验由中国	科学院寒区旱区3	不境与工程研究」	所、北京师范大学、中国	国科学院遥感与数字地球研究用	听组织实施,目前已有36家科
回车搜索标题和摘要		研单位的360多位	z科研人员、工程	£技术人员和研9	8生参加了试验。		
		"黑河生态水 心"(http://www. of World Data S	文遥感试验(Hi heihedata.org/) ystem, http://care	WATER)"数据 发布,数据英3 d.westgis.ac.cn	中文版在国家自然科学 Z版在Cold and Arid Ri /)发布。	基金委员会"黑河计划数据管理 egions Science Data Center a	中 at Lanzhou (CARD, a member

产生了从流域综合观测、异质性地表遥感产品生产、尺度转换与真实性检验、到模型-观测集成与生态水 文应用的一系列成果。

论文发表

截止2017年12月,观测数据集共支持发表学术论文716篇 (HiWATER:377;WATER:339),其中SCI论文498篇 (HiWATER: 290; WATER: 208)。

WATER文章统计

HiWATER文章统计

LIU	eι	di.,	201
WC	DS:	30	

国际知名的水文学家、道尔顿奖获得者Vereecken教授认为:黑河观测系统与 美国关键带观测、国家生态观测网络、丹麦水文观测系统、澳大利亚陆地生 态系统研究网络是国际上最先进的流域观测系统(Vereecken et al., 2015, WRR)。

@AGU PUBLICATIONS

Water Resources Research

RESEARCH ARTICLE

Soil hydrology: Recent methodological advances, challenges, and perspectives

Special Section: The 50th Anniversary of Water Resources Research

H. Vereecken¹, J. A. Huisman¹, H. J. Hendricks Franssen¹, N. Brüggemann¹, H. R. Bogena¹, S. Kollet¹, M. Javaux^{1,2}, J. van der Kruk¹, and J. Vanderborght¹

丁仲礼院士认为:黑河试验建立了开放的试验场,完成了全面共享的多尺度综合数据集,推动了国产卫星数据在科学研究和满足国家重大需求方面的应用。

国际冰雪水文委员会主席John Pomeroy教授:黑河观测试验为我 们在全球范围内构建系统的山区观 测体系提供了非常好的范例和重要 的灵感来源。

2	015/5/5 (周二) 19:22
F	Pomerov, John <iohn.pomerov@usask.ca></iohn.pomerov@usask.ca>
R	E INARCH Proposal for GEWEX Hydrometeorology Panel
如中人 Xin Li	
● 转发该加升台时	周辺 2016/8/17 13:50。
Dear Xin,	
Glad you a	re happy with INARCH. Your sites are a source of great inspiration and a global model for how well a mountain
catchment	can be instrumented and the further scientific benefits that ensue by coupling this with a strong remote sensing
and model	ling programme.
forget the and June th there is sor	Qingha! Plateau and its vistas in particular. I would like to visit again and continue our collaboration, but May his year are fully booked up for me and even a short visit is not possible. I am checking with my staff to see if meone suitable for a visit.
My postal a	address is
117 Science	e Place
Saskatoon,	Saskatchewan
57N 5C8	
Canada	
Thank you	for sending the cards in any case.

四、主要结论

1、在WATER、HiWATER的框架下,开展的密集、立体的通 量观测矩阵试验、构建的多要素-多尺度-网络化-立体-精细 化的流域综合观测网可以捕捉非均匀下垫面地表参数的异质 性、尺度效应与不确定性等,提升了流域陆表过程的综合监 测能力。

2、黑河流域综合观测网将朝着基于物联网的、以"地面观测 网-无人机-多源卫星"为主的智能监测系统方向发展,把观 测区域从黑河流域扩展到整个祁连山地区。并且将开展绿洲-荒漠关键带,乃至内陆河关键带的观测。同时也重视地面观 测、遥感与大尺度模型的集成,增强内陆河流域陆表过程的 预测能力。

- 1. Li Xin, Li Xiaowen, Li Zengyuan, et al., Watershed allied telemetry experimental research, Journal of Geophysical Research-Atmospheres, 2009, 114, D22103, doi:10.1029/2008JD011590.
- 2. Li Xin, Cheng Guodong, Liu Shaomin, et al., Heihe Watershed Allied Telemetry Experimental Research (HiWATER): Scientific objectives and experimental design. Bulletin of American Meteorological Society, 2013, 94(8): 1145-1160.
- 3. Li Xin, Liu Shaomin, Xiao Qing, et al., A multiscale dataset for understanding complex eco-hydrological processes in a heterogeneous oasis system. Scientific Data, 2017.4, 170083. doi: 10.1038/sdata.2017.83.
- 4. Li Xin, Cheng Guodong, Ge Yingchun, et al., Hydrological Cycle in the Heihe River Basin and Its Implication for Water Resource Management in Endorheic Basins. Journal of Geophysical Research-Atmospheres, 2018, 123, https://doi.org/10.1002/2017JD027889
- 5. Liu Shaomin, Xu Ziwei, Wang Weizhen, et al., A comparison of eddy-covariance and large aperture scintillometer measurements with respect of the energy balance closure problem. Hydrol. Earth Syst. Sci., 2011, 15(4), 1291-1306.
- 6. Liu Shaomin, Xu Ziwei, Song Lisheng, et al., Upscaling evapotranspiration measurements from multi-site to the satellite pixel scale over heterogeneous land surfaces, Agricultural and Forest Meteorology, 2016, 230-231, 97-113.
- 7. Liu Shaomin, Xu Ziwei. Micrometeorological methods to determine evapotranspiration. In Li, X., Vereecken (eds.), Observation and Measurement, Ecohydrology, Springer-Verlag Berlin Heidelberg 2018, https://doi.ort/10.1007/978-3-662-47871-4_7-2.
- 8. Liu Shaomin, Li Xin, Xu Ziwei et al., The Heihe integrated observatory network: A basin-scale land surface processes observatory in China, Vadose Zone Journal, under review.
- 9. Xu Ziwei, Liu Shaomin, Li Xin, et al., Intercomparison of Surface Energy Flux Measurement Systems Used during the HiWATER- MUSOEXE. Journal of Geophysical Research- Atmospheres, 2013, 118, 13140-13157.
- 10. Li Xiang, Liu Shaomin, Li Huaixiang, et al. Intercomparison of six upscaling evapotranspiration methods: From site to the satellite pixel. Journal of Geophysical Research- Atmospheres, 2018, 123, https://doi.org/10.1029/2018JD028422.
- 11. Song Lisheng, Liu Shaomin Liu*, William P. Kustas, et al. Monitoring and validating spatio-temporal continuously daily evapotranspiration and its components at river basin scale, Remote sensing of environment, under review.
- 12. Ma Yanfei, Liu Shaomin, Song Lisheng, et al., Estimations of daily evapotranspiration at Landsat-like scale (100 m) using multi-source remote sensing data over Zhangye Oasis in the Middle Reaches of the Heihe River. Remote Sensing of Environment, in press.
- 13. Liu Rui, Liu Shaomin, Yang Xiaofan, et al., Wind dynamics over a highly heterogeneous oasis area: An experimental and numerical study. Journal of Geophysical Research-Atmospheres, in press.
- 14. Xu Tongren, Guo Zhixia, Liu Shaomin, et al., Upscaling Evapotranspiration from Flux Towers to Watershed. Journal of Geophysical Research-Atmospheres, under review.

