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mm 207 d o PS WSC
0~20 ¢cm 2 mm 60% WEFPS(9 ~12 d) ; @
40%  60% WFPS ( 13 ~16 d) ,
0 (44% 55% 1.2.2 4d
6% ) pH 7. 16; 50 mL
6.96 g * kg~ 1.32g+cm™ 0.48 16
g kg™ 1.26 g * ecm ™’ 3 o
2.65 g+ em™ WFPS 30s
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X
WFPS—I_( / ) x 100% 25 °C
1.2 : (Agi-
lent 7890A Agilent Palo Al A A
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80% WFPS 25 C F,=(C,-C,) xV
8 d . 8 d - F, N,0 (mg); C,
. N,0 (mg+mL™");C, N,O
Mikha "’ (mgemL™");V
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1.2.3
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a7
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400 kg * hm ™ ) 6 N,O 0.38 mg * kg™ 80%
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0d. 16d. 32d
1 N,O
48 d 4 . ) ) )
Tab.1 Effects of soil moisture gradients on cumulative
64 d. N, O emissions under different nitrogen application levels
4 :® N,0 /(mg*kg™")
( WEPS) ON 200 N 400 N
80% WFPS ( 0~4 d) . @ 40% 0.003 59 +£0.00 a 0.12+0.01 a 0.16 £0.03 a
60% 0.005 57 +0.00 b  0.39+£0.05 b 0.65+0.07 b
80% WFPS 80% 0.00526+0.00b 2.16+0.10 ¢ 3.71 £0.18 ¢
60% WFEFPS( 5~8d);® DSC 7
60% WFPS 40% WF-
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2 5 ~8dN,0
( 1) 1 2.3.4 N,O
2.1 N,O 1
(0O N) 4d . N,O DSC
N,O 0.06 ~2.59 ug * kg™'. DSC N,0 (60% ~40%
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5~8d( 1) 2.59 ng = kg™t 2.15 60% WFPS N,O
pg e kg N,O ( 1) WSC  DSC
N,0 N,0
(P=0.05) . N,O N,O
1 N,0 () ()
Fig. 1 Effects of soil moisture content on N,O emission rate ( left) and accumulative N,O emission ( right)
N,O 221.71 ~712.54 pg * kg™ 254.22 ~
4d WSC DSC 719.01 pg * kg™ (200 N)
N, O N,O N, O 108. 76 ~433.78
pg s kg™' 153.63 ~503.08 pg * kg '
N,O 60.87% ~93.93% . N,O
N,0 ( P <0.05) 108.79 ~719.01 pg * kg™'.
o DSC N,O (P<
N,O WSC 0.05) : N,O
1) 108.76 ~503.08 pg * kg™ ';
(400 N) N,O N,0 221.71 ~
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2.2 N,O 2) . 400 N N,O
(0 N) DSC N,0 2.55 mg * kg?'  2.76
wscC N,0 mg* kg™, 200 N N,0
( Do DSC N,O 1.47 1.or .
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Effects of Different Irrigation and Fertilization Conditions
on Soil N,O Emission from Oasis Farmland

WANG Yong' > ZHAO Cheng-yi'
(1. Key Laboratory of Oasts Ecology and Desert Environment Xinjiang Institute of Ecology and Geography
Chinese Academy of Sciences Urumgqi 830011 Xinjiang China;
2. University of Chinese Academy of Sciences Betjing 100049  China)

Abstract:  The effects of soil drying-wetting alternation on nitrous oxide ( N,0) emission from oasis farmland were
analyzed which could provide the basis for optimizing irrigation and fertilization and reducing N, O emission of oasis
farmland. A laboratory incubation experiment was performed to determine the effect of soil drying-wetting alterna—
tion on its N,O emission from oasis farmland in arid area. The 100 g dried soil was placed in a 730 mL mason jar

then the mason jar was placed in a 25 °C incubator and the nitrogen content and soil moisture content were strictly
controlled through connecting a syringe with a three-way valve to extract gas from the mason jar. The result are as
follows: (D Soil drying-wetting alternation influenced significantly the cumulative N,O emission of oasis farmland
soil. Without fertilization the cumulative N,O emission of dryly-treated soil was 1.28 times of that of wetly-treated
soil; (2) Compared with non-nitrogen treatment fertilization promoted significantly the soil N,O emission the high—
est N, O emission occurred after nitrogen was applied for 0 —4 days and then the soil N,O emission was reduced
obviously; (3) The N,O emission rate of the wetted soil was significantly higher than that of the dried soil after nitro—

' and it was 1. 16 times of that of

gen was applied. The cumulative N, O emission of wetted soil was 2. 07 mg * kg~
dried soil. Therefore the soil N,O emission from oasis farmland could be reduced by properly prolonging the time
interval of drip irrigation and fertilization.

Key words: oasis farmland; soil drying-wetting alternation; nitrogen application; N,O emission



