earthcn.scichina.com

SCIENTIA SINICA Terrae

中国草地碳储量时空动态模拟研究

张利⁰²,周广胜^{03*},汲玉河⁰³,白永飞⁰

中国科学院植物研究所植被与环境变化国家重点实验室,北京 100093;
 中国科学院大学,北京 100049;
 中国气象科学研究院,北京 100081
 * 通讯作者, E-mail: gszhou@ibcas.ac.cn; gszhou@camscma.cn

收稿日期: 2016-03-25; 接受日期: 2016-05-12; 网络版发表日期: 2016-09-18 中国科学院战略性先导科技专项项目(编号: XDA-05050408)资助

摘要 基于陆地生态系统模型(Terrestrial Ecosystem Model, TEM 5.0),利用温度、降水和太阳辐射等气象资料,结合草地植被类型、土壤质地、海拔、经纬度以及大气 CO₂浓度数据,模拟研究了 1961~2013 年中国草地碳储量和碳密度的时空特征及其影响因素.结果表明: (1) 1961~2013 年间,面积 394.93×10⁴km²的中国草地碳储量为 59.47Pg C,其中植被碳 3.15Pg C(约占全球植被碳储量的 1.3~11.3%),土壤碳 56.32Pg C(约占全球土壤有机碳储量的 9.7~22.5%).草地碳储量以 19.4Tg C a⁻¹年平均增长速率从 1961 年的 59.13Pg C 增加到 2013 年的 60.16Pg C. (2)研究时段内,青藏高原草地碳储量贡献最大,占总碳储量的 63.2%,其次是新疆草地(15.8%)和内蒙古草原 (11.1%). (3) 1961~2013 年,植被碳储量呈增加趋势,年平均增长速率为 9.62Tg C a⁻¹,温度是植被碳库变化的主要因素,二者相关系数可达 0.85.在空间分布上,植被碳变化以增加为主,减少主要出现在南方草地中部,内蒙古西部和中部以及一部分青藏高原草地区.土壤碳储量以 7.96Tg C a⁻¹的速率呈极显著增加趋势,其中 20 世纪 80 年代和 90 年代降水较多温度较低,降水是土壤碳增加的主要影响因素.

关键词 中国草地, 土壤碳, 植被碳, 时空动态, 模拟

1 引言

草地生态系统是陆地生态系统的重要组成部分, 是世界上分布最广的植被类型之一,在全球碳循环 中起着重要作用.根据国家草地资源调查数据结果 (中华人民共和国农业畜牧兽医司和全国畜牧兽医总 站,1996),中国草地面积约394.93×10⁴km²,约占国土 面积的41.1%.中国草地分布经纬跨度大,海拔区间 广,主要分布在东北平原、内蒙古高原、黄土高原、 青藏高原以及新疆山地,而南方的平原、盆地和丘陵 也分布着零散的、斑块状的草地,是全球草地生态系 统的重要组成部分(Scurlock等, 2002).草地是个巨大 的碳库,草地生态系统碳贮量占全球陆地生态系统 的1/3(Schuman等, 2002),仅次于森林生态系统,在 中国陆地生态系统碳循环中扮演着重要角色 (Scurlock和Hall, 1998; 方精云等, 2006).因此,研究

 中文引用格式:
 张利,周广胜,汲玉河,白永飞.2016.中国草地碳储量时空动态模拟研究.中国科学:地球科学,46:1392-1405,doi:10.1360/N072015-00599

 英文引用格式:
 Zhang L, Zhou G S, Ji Y H, Bai Y F. 2016. Spatiotemporal dynamic simulation of grassland carbon storage in China. Science China Earth Sciences, 59: 1946-1958, doi: 10.1007/s11430-015-5599-4

中国草地生态系统碳循环过程及其气候影响因素, 有助于准确评估中国草地生态系统对全球草地生态 生态系统碳收支的贡献及其对全球气候变化的响应.

近年来,我国有不少学者在区域或国家尺度上 采用不同的方法对草地碳循环作了大量研究. 由于 估算过程涉及的草地分布范围、草地面积、时段和估 算方法的差异,导致草地碳库估算结果存在较大差 异. 区域尺度上, Ma等(2010)、Ni(2002)、Piao等(2007) 和 Fan 等 (2008) 估算的北方草地植被碳密度为 0.28~1.29kg C m⁻², 方精云等(1996)、Yang等(2010b) 对北方草地土壤碳密度的估算结果分别为16.7kg C m⁻²和8.49kg C m⁻²; 青藏高原土壤碳密度估算结果范 围在6.5~21.4kg C m⁻²之间(方精云等, 1996; 张永强 等, 2006; Wang等, 2002; Yang等, 2008, 2010b); 内蒙 古温带草地植被碳密度269~1250g C m⁻²(方精云等, 1996; Ni, 2002; 朴世龙等, 2004; 马文红等, 2006). 国家尺度上,已有研究结果表明,中国草地土壤有机 碳密度位于10.0~15.1kg C m⁻²之间(方精云等, 1996; 李克让等, 2002; Ni, 2001, 2002; Xie等, 2007), 植被碳 密度估算范围在0.22~1.21kg C m⁻²之间(方精云等, 1996, 2006; 李克让等, 2002; Peng和Apps, 1997; Ni, 2001, 2002; 朴世龙等, 2004; Piao等, 2007; Fan等, 2008; Yang等, 2010a; Yu等, 2010; 张峰, 2010). 由于 草地植被分布与面积的差异,使得估算的草地碳库 差异更大(植被碳0.9~4.66Pg C, 土壤有机碳16.7~ 74.5Pg C). 而且, 目前仍没有关于1961年以来长时间 尺度的中国草地生态系统碳收支和碳库时空格局的 整体认识,制约着草地生态系统碳收支动态及其对 气候变化响应的理解.

本研究关注较大尺度草地植被碳与土壤碳库及 其动态变化的研究,因此试图基于利用中国草地的 碳收支调查数据及相应的气象数据,结合陆地生态 过程模型,模拟研究1961~2013年中国草地生态系统 碳储量的时空动态,分析各草地区碳储量及其对中 国草地生态系统碳储量的贡献,为增进对中国草地 生态系统碳储量动态的理解及其科学管理提供参考.

2 材料与方法

2.1 研究范围

由于草地分类系统和资料来源的不同,已有研

究使用的草地面积差异较大. 按照中国植被图(侯学 煜, 1982, 2001)估算我国草地面积分别为280.0× 10⁴km²(基于1:1000000中国植被图)(沈海花等, 2016) 和 406.0×10⁴km²(基于 1:4000000 中国植被图)(Ni. 2001). 而按照草地清查资料的估算结果则位于299.0× 104~569.9×104km2之间(方精云等, 1996, 2006; 中华 人民共和国农业部畜牧兽医司和全国畜牧兽医总站, 1996: Ni. 2002. 2004: 朴世龙等. 2004: Piao等. 2007: Fan等, 2008). 此外, 卫星遥感数据也是估算草地面 积的来源之一. 基于2000年1:100000土地利用数据 (Landsat TM图像)、2001年MODIS草地覆盖数据和 NOAA/AVHRR(8km)全球植被图估算的我国草地面 积分别为185×104km2(王思远等, 2010)、225×104km2 (陈世荣等, 2008)和167×10⁴km²(李克让等, 2002). 在 众多草地面积来源中,草地资源普查资料和 1:1000000中国植被图,是确定我国草地面积比较可 信的两个基本数据源(沈海花等, 2016).因此,本研 究基于中国草地资源清查资料(中华人民共和国农业 畜牧兽医司和全国畜牧兽医总站, 1996), 通过数字化 处理获得中国草地总面积约394.93×104km2,以此作 为研究范围. 草地资源调查以省(市、自治区)为单位 开展,每个省以县为基本单位开展野外调查,调查范 围覆盖全国2000多个县,95%以上的国土面积均按统 一规程进行了调查.研究中将中国草地分为七大草 地区:青藏高原草地区、内蒙古草原区、新疆草地区、 黄土高原草地区、华北暖温性草地区、南方草地区以 及东北草地区.其中,青藏高原草地面积最大 (165.38×10⁴km²),其次是内蒙草原(84.07×10⁴km²)和 新疆草地(65.97×10⁴km²), 三者共占中国草地面积的 80%左右.中国草地生态系统共包含了高寒草原、低 地盐化草甸、高寒草甸、温性草原、温性荒漠和暖性 灌草丛等在内的19种草地类型,以及未分类草地.

2.2 数据资料

本研究基于陆地生态系统过程模型(TEM模型) 模拟研究1961~2013年中国草地生态系统碳库的时空 变化特征. TEM模型所需资料包括: 气象数据(温度、 降水和太阳辐射)及其他环境数据(经度、纬度、海拔、 土壤质地、植被类型、草地面积以及大气CO₂浓度数 据). 模型可输出包括总初级生产力(GPP)、净初级生 产力(NPP)、土壤呼吸(RH)、净生态系统生产力 (NEP)、植被含碳量(VEGC)、土壤有机碳(SOC)等共 101个植被和土壤系统的碳、水和热量等相关变量, 可根据研究需要指定所需变量输出. 气象数据来自 于气象数据共享网1961~2013年中国基本、基准地面 气象观测站的日值数据集. 对于区域尺度上生态系 统过程的模拟研究, TEM模型需要在格点上运行完 成. 为将全国1961~2013年的站点数据插值到相应网 格点上,利用Thornton等(1997)的截断高斯滤波算子 空间插值算法,结合各气象站地理信息,将地面站点 的温度、降水等观测资料通过空间插值,形成10km× 10km分辨率的栅格数据. 其中温度资料采用高斯滤 波算子插值方法, 降水资料采用薄盘样条插值方法, 并利用Thornton和Running(1999)提出的方法得到日 值空间格点的太阳辐射数据. 海拔高程数据来自于 国家基础地理信息库,分辨率为1km×1km,在使用前 将其统一至10km×10km的分辨率. 土壤数据来源于 中国科学院南京土壤研究所整理成的中国土壤数据 库(于东升等, 2005), 数据库来源于第二次全国土壤 普查的结果,包含了模型所需的土壤砂粒(%)、黏粒 (%)和粉粒含量(%)等. 草地植被类型及面积数据来 源于中国草地资源清查资料(中华人民共和国农业畜 牧兽医司和全国畜牧兽医总站, 1996)(图1). 1961~ 2013年的大气CO2数据来自NOAA发布的全球CO2浓 度观测数据(http://www.esrl.noaa.gov/gmd/ccgg/trends).

图1 中国草地分布图

2.3 研究方法

TEM模型是适用于全球和区域尺度的基于格点 的生态系统过程模型,利用空间相关的气候、海拔、 土壤和植被数据,以月为时间步长对陆地生态系统 的碳、氮通量和库的大小进行评估(Raich等, 1991). 本研究中,格点大小为10km×10km,具体模型介绍详 见已有研究(Raich等, 1991; Zhuang等, 2003; McGuire 等, 1992). TEM模型包括CTEM和XTEM两部分, 其 中CTEM用于模型的参数率定, XTEM则将CTEM率 定后的参数文件作为输入,从而按需求进行不同时 空尺度的模拟,为评估中国草地生态系统碳收支,首 先采用2011~2013年草地碳收支调查数据以及文献中 提供的具有代表性的植被和土壤碳/氮库及库间通量 作为目标值,在340ppm的CO₂浓度以及多年平均气 象条件下, 通过CTEM模型对控制各个过程的速率参 数进行率定(Calibration).参数率定过程的完成需满 足以下三个条件: (1) CTEM模拟的中国草地植被年 NPP及年GPP与初始估计值接近(绝对误差<0.1): (2) CTEM 模拟的中国草地生态系统年氮吸收量 (NUPTAKE)接近于观测值(绝对误差<0.1); (3) CTEM 模拟的中国草地植被年NEP接近于零(平衡状态假 设)(Zhuang等, 2010; Sui和Zhou, 2013). 本研究针对 中国七大草地区的特征共率定8套参数.其中青藏高 原草地2套,其他草地区各1套,参数化方案详见网络 版附录表1~8(http://earthcn.scichina.com). 参数率定 完成后,利用2011~2013年草地碳收支调查资料对模 拟结果进行验证. 当多个观测点位于同一个格点 (10km×10km)时,对该格点内的观测值进行平均.

将通过参数率定和精度检验得到的参数用于 1961~2013年中国草地生态系统碳收支的模拟研究. 对研究区域内的每一个格点,首先采用1961~2013年 的多年月平均气象资料,在固定大气CO₂浓度和当前 生态系统条件下,运行XTEM模型达到平衡状态.然 后,利用1961~1975年15年的气象资料,连续运行 3×15年以考虑年际间的气候变化对目前生态系统初 始条件的影响.最后,利用1961~2013年间月步长的 气象数据进行整个中国草地区域模拟.模拟完成后, 利用草地普查的面积数据与模拟结果的乘积统计中 国区域草地植被碳库和土壤碳库,以及净生态系统 用于参数率定和模拟验证的植被碳和土壤碳数 据来源于2011~2013年草地碳收支调查(图2a).其中, 参数率定数据的选取是从全国752个气象站点中随机 选出每个草地区内分布均匀的10个气象站点(图2b), 然后通过GIS软件获取气象站点周围50km内的草地 调查点作为参数率定数据源,余下的调查点作为精 度检验的数据源.

3 研究结果

3.1 模型验证

剔除用于参数率定的植被碳和土壤碳数据,将 剩下的植被碳和土壤碳数据用于模拟精度检验.首 先,针对2011~2013年草地碳收支实测资料,删除地 上植被碳密度或地下植被碳密度,以及各层次土壤 碳密度均为零的不合理数据;然后采用拉依达准则 (即3δ法),剔除观测数据中与平均值的偏差超过3倍 标准差范围的数据;最后利用余下的数据进行精度 验证.结果表明,本地参数化后的TEM模型对中国草 地生态系统碳库的模拟与观测结果基本一致.中国7 个草地区精度检验结果如图3所示,0.4<*R*²<0.6,均通 过0.01的显著性检验,基本满足模型的精度要求.可 见,TEM模型可用于中国地区草地生态系统植被碳与 土壤碳的模拟研究.

3.2 中国草地生态系统碳储量和碳密度时空动态

1961~2013年中国草地生态系统年平均碳储量为 59.47Pg C, 其中, 植被碳储量为3.15Pg C, 土壤碳储

图 2 中国草地调查样点分布(a)和参数率定点分布(b)

图 3 TEM 模拟的植被碳(a)、土壤碳(b)与 2011~2013 年样地实测的比较

量为56.32Pg C, 土壤碳储量为植被碳储量的约18倍. 近53年来, 中国草地碳储量从1961年59.13Pg C增加到 2013年的60.16Pg C, 年平均增长速率为19.4Tg C a⁻¹, 年际变化差异显著(R^2 =0.81, P<0.001, N=53) (图4). 研究时段内, 中国草地生态系统平均碳密度为15.06 kg C m⁻² a⁻¹, 在草地面积不变的情况下, 草地生态系 统碳密度以4.7g C m⁻² a⁻¹的增长速率呈显著的增加 趋势.

青藏高原草地、内蒙古草原和新疆草地面积占中 国草地面积的80%.其中,青藏高原草地面积最大 (165.4×10⁴km²),年平均碳储量为37.61Pg C,占全国 草地总碳储量的63.2%;其次是新疆草地(69.8× 10⁴km²)和内蒙古草原(89.8×10⁴km²),年平均碳储量 分别为9.38Pg C和6.63Pg C.中国中东部地区草地面 积较少,且分布零散,草地生态系统碳储量较小(表1).

3.3 中国草地生态系统植被碳和土壤碳储量及碳 密度年际变化

1961~2013年中国草地生态系统的植被碳库年平均值为3.15Pg C, 植被碳从1961年的3.05Pg C增加至

2013年的3.56Pg C, 以9.62Tg C a⁻¹的速率呈现极显 著的增加趋势(*R*²=0.51, *P*<0.001, 图5a), 年平均植被 碳密度为797g C m⁻² a⁻¹. 草地土壤碳储量呈波动式 增加趋势, 整体上以7.96Tg C a⁻¹的速率呈现极显著 的增加趋势(*R*²=0.82, *P*<0.001, 图5b), 从1961年的 56.08Pg C增加至2013年的56.60Pg C, 年平均为 56.32Pg C. 其中, 以面积最大的青藏高原土壤碳储 量的贡献最大(63.1%), 储量为35.56Pg C, 其次是新 疆草原(9.11Pg C)和内蒙古草原(6.46Pg C), 土壤碳储

图 4 中国草地生态系统总碳储量的时间动态

草地区	面积 (×10 ⁴ km ²)	植被碳密度 (g C m ⁻²)	土壤碳密度 (kg C m ⁻²)	植被碳 (Tg C)	土壤碳 (Pg C)	总碳 (Pg C)	总碳密度 (kg C m ⁻²)
青藏高原草地	165.38	1241	21.5	2052	35.56	37.61	21.7
内蒙古草原	84.07	205	7.7	172	6.46	6.63	7.9
新疆草地	65.97	409	13.8	270	9.11	9.38	14.2
南方草地	29.43	840	1.3	247	0.39	0.64	2.1
黄土高原草地	26.31	538	6.0	142	1.57	1.71	6.5
东北草地	13.39	1202	18.3	161	2.45	2.61	19.5
华北暖温性草地	10.39	1010	7.6	105	0.79	0.90	8.6
总计或平均	394.93	797	14.3	3149	56.32	59.47	15.1

	表1	1961~2013年中国各草地区平均碳储量和碳密度
--	----	---------------------------

图 5 中国草地植被碳储量(a)和土壤有机碳储量(b)动态变化

量的贡献分别为16.2%和11.5%. 1961~2013年间平均 土壤有机碳密度为14.3kg C m⁻² a⁻¹(表1).

1961~2013年,中国草地区温度呈显著增加趋势 (0.06℃ a⁻¹, R²=0.52, P<0.001), 而降水增加趋势不明 显(0.74mm a⁻¹, R²=0.13, P>0.05)(图6a), 温度增加主 要出现在1998年以后, 目同时期降水呈显著下降趋势, 模拟结果显示, 1961~2013年温度和降水变化使得中国 草地生态系统碳库约增加1.03Pg C(~0.34Pg C a⁻¹), 其中, 1980年前碳库增加不明显, 20世纪80年代和90 年代以土壤碳增加为主,同期降水较多温度较低,降 水是土壤碳增加的主要影响因素, 2000年后以植被碳 增加为主,同期温度呈显著增加趋势而降水呈减少 趋势,温度与生物量呈正相关,温度的增加影响植被 光合速率,促进植被生长.整个研究时段内,温度显 著增加而降水增加不显著,且生长季降水均大于 300mm(属较湿润年份). Yang等(2009)研究表明, 在 较湿润青藏高原地区(生长季降水大于200mm),温度 的增加会加速高寒草地的植被生长, Piao等(2007)的 研究表明草地生物量随温度增加而增加.本研究结 果同样表明在降水满足草地植被生长的条件下,温 度成为影响植被碳库的主要因素(图6a和b).

3.4 中国草地植被碳密度和土壤碳密度空间分布

中国草地植被碳密度现状空间异质性较大(图 7a),植被碳密度较大的地区分布在青藏高原草地和 东北草地,内蒙古草原和新疆草地南部大部分地区 则较小.植被碳密度在9~2943g C m⁻²之间,主要集 中在200~1600g C m⁻²之间.图7b~d为中国植被碳密 度的年代际变化的空间特征,其中负值表示在年代 际变化上碳密度减少,反之正值表示增加.统计表 明,从20世纪60年代至80年代,约占研究区域总面积 58%的草地区植被碳密度表现为增加,其余42%则减 少,减少的区域主要出现在青藏高原草地区(图7b); 从20世纪80年代至21世纪初,约96%的草地区植被碳 密度增加,仅4%的草地区植被碳减少,且主要分布 在内蒙古中西部草地区(图7c);从21世纪初到2011~ 2013年,约56%的草地面积的植被碳密度减少,增加 的区域主要分布在青藏高原东南部,以及少部分东 北草地区和新疆草地区(图7d).

中国草地土壤碳密度现状的空间异质性较草地 植被碳密度大(图8a),土壤碳密度较大的地区分布在 青藏高原东南部草地、东北草地以及新疆草地北部. 黄土高原草地、华北暖温性草地以及南方草地土壤有 机碳密度较小.土壤有机碳密度分在0.4~49.4kg C m⁻² 之间,主要集中在4~30kg C m⁻²之间.由各年代际土 壤碳密度的空间分布差异可知,从20世纪60年代至 80年代、20世纪80年代至21世纪初、以及21世纪初到 2011~2013年间,土壤碳密度均以增加为主,分别约 占总研究草地面积的71%、53%和61%(图8b-d).

近53年来,中国草地区温度以增温为主,增温最 明显的区域为青藏高原草地区(图9a),最强增温速率 可达0.2℃ a⁻¹以上.绝大部分草地区降水变化在-3~ 3mm a⁻¹之间,降水减少主要出现在南方草地西部、黄 土高原草地东南部以及大部分华北暖温带草地区(图 9b).在研究时段内,植被碳变化以增加为主,减少主 要出现在南方草地中部,内蒙古西部和中部以及一 部分青藏高原草地区(图9c).土壤碳变化空间差异显 著,减少主要出现在青藏高原草地区、东北草地区、 华北暖温带草地北部和东部,以及部分南方草地区. 其中,温度和降水增加较明显的地区如青藏高原草

图 6 中国草地温度、降水和生长季降水的年际变化(a)以及植被碳、土壤碳和总碳相对于 1961 年的变化(b)

图 7 植被碳密度变化的空间分布特征

(a) 2011~2013 年植被碳密度; (b) 20 世纪 80 年代与 60 年代; (c) 21 世纪初与 20 世纪 80 年代; (d) 2011~2013 年与 21 世纪初

地区,其植被碳库略有增加,而土壤碳库略有减少, 可能原因是高海拔高寒地区因增温增雨促进植被生 长,同时因温度升高导致土壤冰冻时间缩短,加速土 壤碳的氧化分解和土壤呼吸速率,增加土壤碳向大 气的输出量.

4 讨论

4.1 中国草地生态系统碳储量和碳密度

本研究结合草地分布、气象数据以及土壤和植被 碳密度,基于陆地生态系统模型(TEM)模拟了 1961~2013年中国草地生态系统植被碳和土壤有机碳 储量、密度的时空变化特征,并利用2011~2013年间 研究区域内的草地碳密度调查资料对TEM模型的模 拟结果进行精度检验.其中,草地分布数据来源于中 国草地资源调查,土壤有机碳和植被碳密度来源于 2011~2013年草地碳收支调查.各草地区验证结果: 0.4<*R*²<0.6,且均通过了0.01的相关性检验,表明 TEM模型可用于模拟中国草地植被碳、土壤有机碳储 量和密度的时空变化.

结果显示,中国草地植被碳库为3.15Pg C,植被 碳密度为0.8kg C m⁻²,处于已有中国草地植被碳储 量研究结果范围(0.6~4.7Pg C, 0.22~1.21kg C m⁻²)(方 精云等, 1996, 2006; 李克让等, 2002; Peng和Apps, 1997; Ni, 2001, 2002; 朴世龙等, 2004; Piao等, 2007; Fan等, 2008; Yang等, 2010a; Yu等, 2010; 张峰,

图 8 土壤碳密度变化的空间特征

(a) 2011~2013 年土壤碳密度; (b) 20 世纪 80 年代与 60 年代; (c) 21 世纪初与 20 世纪 80 年代; (d) 2011~2013 年与 21 世纪初

2010). 其中,面积较大的青藏高原草地植被碳库为 2.05Pg C,平均碳密度为1.24kg C m⁻²;内蒙古草地植 被碳库为172Tg C,平均碳密度为205g C m⁻²;新疆草 地植被碳库为270Tg C,平均碳密度为409g C m⁻².中 国草地土壤碳库为56.32Pg C,土壤碳密度为14.3 kg C m⁻²,位于已有研究结果的范围内(16.7~74.5Pg C, 10.0~15.1kg C m⁻²)(方精云等,1996;李克让等,2002; Ni, 2001, 2002; Xie等, 2007).其中,青藏高原草地土 壤碳库为35.56Pg C,平均碳密度21.5kg C m⁻²,而现 有研究的土壤碳库范围为7.4~74.9Pg C,平均碳密度 为6.5~21.4kg C m⁻²(方精云等,1996; 王根绪等,2002; Yang等,2008);内蒙古草原土壤有机碳储量为6.46Pg C,密度为7.7kg C m⁻²,略高于Yang等(2010b)估算的 结果(6.63kg C m⁻²);新疆草地土壤碳储量为9.1Pg C, 密度为13.8kg C m⁻²,接近买买提安尼瓦尔等(2006) 的土壤碳密度估算(11.8~50.2kg C m⁻²), 与Yang等 (2010b)估算的新疆草地平均土壤碳密度12.11kg C m⁻². 不同研究结果估算的草地碳库差异较大, 具体原因 分析见已有研究(Ni, 2002; 马文红等, 2006; 方精云 等, 2010; 高添等, 2012).

4.2 气候因素对中国草地生态系统碳循环的影响

本研究未考虑人类活动和土地利用变化对草地 生态系统的影响,因此碳库变化主要受气候因素变 化的影响.已有研究也表明中国草地生态系统碳循 环受降水(Xiao等,1995;韩彬等,2006;买买提安尼 瓦尔等,2006;马文红等,2010)和温度(买买提安尼瓦 尔等,2006;Yang等,2009)等气候因素的影响较显著. 降水变化通过改变植被生长和土壤微生物活动所需 水量,以及土壤含水量,来影响凋落物碳素向土壤的

图 9 1961~2013 年温度(a)、降水(b)、植被碳(c)以及土壤碳(d)变化空间分布

输入和土壤呼吸速率,从而影响到草地生态系统碳 库.而温度变化则主要作用于植物光合速率、植物根 系呼吸以及土壤微生物活动,进而影响生态系统碳 库的输入和输出量.因此,草地生态系统碳储量的变 化取决于输入与输出量之间的制衡作用(穆少杰等, 2014).1961~2013年中国草地区增温速率为0.06℃ a⁻¹, 同期年降水增加趋势不明显(0.74mm a⁻¹, *R*²=0.13, *P*>0.05),1998年后增温显著,而同期年降水明显减少 (图6a).研究结果表明,温度是植被碳变化的主要影 响因子,二者相关系数可达0.85(*R*²=0.85, *P*<0.0001, *N*=53),20世纪80年代和90年代中国草地碳库变化以 土壤碳增加为主,同期温度较低降水较丰富,降水是 土壤碳增加的主要影响因素(图6a和b).自1961年以 来,青藏高原草地区温度升高降水增加的气候条件 促进植被生长,使得植被碳以增加为主,同时温度升 高延长生长季,并提高土壤碳的氧化分解和土壤呼 吸速率,增加土壤碳向大气的输出量,从而土壤碳以 减少为主.降水是中国北方温带草地生态系统生产 力最主要的限制因子(Ni, 2004;高添, 2014),降水增 加促进大气碳素向植被的输入,因此内蒙古草地和 新疆草地的大部分植被碳略有增加.高磊(2013)研究 表明温度增加可促进土壤有机碳密度的分解释放, 而降水增加则可促使土壤有机碳密度增加,由于降 水增加引起的土壤有机碳密度增加大于温度增加产 生的土壤有机碳密度的消耗,因而内蒙古草地和新 疆草地土壤有机碳以增加为主.

本研究结果表明:中国草地生态系统植被碳和 土壤有机碳的年际波动主要受年均温的影响.总研 究区域以及各个草地区植被碳库的年际波动与年均 温均呈显著正相关(表2),总研究区域土壤有机碳与

地区		植被碳			土壤有机碳	
	年均温	年降水量	辐射	年均温	年降水量	辐射
青藏高原草地	0.86^{**}	0.01	0.53**	0.86**	0.01	0.38**
内蒙古草原	0.56^{**}	0.04	0.17^{**}	0.57^{**}	0.00	0.12^{*}
新疆草地	0.67^{**}	0.23**	0.02	0.60^{**}	0.22^{**}	0.06
南方草地	0.72^{**}	0.02	0.00	0.04	0.05	0.19**
黄土高原草地	0.82^{**}	0.01	0.01	0.61**	0.00	0.00
东北草地	0.36**	0.00	0.30**	0.21**	0.01	0.14^{**}
华北暖温性草地	0.61**	0.03	0.01	0.01	0.00	0.02
总区域	0.85^{**}	0.02	0.22^{**}	0.24^{**}	0.15^{**}	0.02

表 2 中国草地植被碳和土壤有机碳与气象因子的相关性分析^{a)}

a) *P<0.05, **P<0.01

年均温呈显著正相关(R²=0.24, P<0.001, N=53, 表2), 其中青藏高原草地(R²=0.86, P<0.001, N=53, 表2)和 东北草地(R²=0.21, P<0.001, N=53, 表2)土壤碳与年 均温呈显著负相关, 华北暖温性草地土壤碳与年均 温的年际波动相关性不显著. 新疆草地植被碳(R²= 0.23, P<0.001, N=53, 表 2) 与土壤碳 (R²=0.22, P< 0.001, N=53, 表2)均与年降水量呈显著正相关. 总研 究区域植被碳与辐射呈显著正相关(R²=0.22, P< 0.001, N=53, 表2), 其中青藏高原草地与辐射呈显著 负相关(R²=0.53, P<0.001, N=53, 表2), 内蒙古草原 (R²=0.17, P<0.001, N=53, 表2)和东北草地(R²=0.3, P<0.001, N=53, 表2)与辐射呈显著正相关, 青藏高原 草地(R²=0.38, P<0.001, N=53, 表 2)、南方草地 (R²=0.19, P<0.001, N=53, 表 2)及内蒙古草原 (R²=0.12, P<0.05, N=53, 表2)土壤碳与辐射呈显著正 相关,而东北草地(R²=0.14, P<0.001, N=53, 表2)与土 壤碳呈显著负相关.

4.3 人类活动对草地生态系统碳循环的影响

近年来,由于人口增加与资源有限之间矛盾的 加剧,草地生态系统遭遇越来越严重的人类活动影 响,如放牧、草地开垦为农田以及施肥等(肖胜生等, 2009;陈晓鹏和尚占环,2011;穆少杰等,2014).但 人类活动也包含积极的方面,如草原生态恢复与重 建、种草、草地围封和禁牧等(陈晓鹏和尚占环,2011; 高添等,2012;张一心等,2014;邹婧汝和赵新全, 2015).

放牧是干扰草地生态系统最广泛的人类活动, 是造成草地碳储量变化的重要因素.放牧按不同强 度可分为无牧、轻度、中度和重度, 草地生产力随着 放牧强度的增大呈先增大而后降低趋势.放牧对草 地植被生长(韩国栋等, 2007)和土壤固碳(Schuman等, 2002)存在着一定的补偿作用,因此适度放牧可增加 地上生物量(Ojima等, 1993)和土壤碳库(Reeder等, 2004). 而过度放牧则导致地上生物量的下降. 加速 土壤有机碳损失(Fernandez等, 2008), 这是因为随着 放牧强度的增大, 地表盖度和植物群落高度下降, 导 致地上生物量(张伟华和关世英, 2000)和凋落物量减 少.同时减少了草地植被固定的碳素向土壤的输入 以及向地下生物量的分配(胡庆货等, 2015). 现有研 究表明,放牧对草地生态系统碳的影响因草地类型、 放牧强度、放牧年限以及研究方法的不同,结果不尽 一致(肖胜生等, 2009), 但都一致认为过度放牧会引 起草地退化,从而减少土壤有机碳含量.北方草地是 我国的主要牧区,包括青藏高原草地区、内蒙古草原 区、新疆草地区和黄土高原草地区(面积共 341.73×10⁴km²),依据农业部统计全国约50~60%的 天然草地存在着不同程度的退化趋势(主要分布在西 北、西南和内蒙等牧区)(Liu等, 2003), 据此推算, 本 研究中北方草地约有170.86×104~205.04×104km2属于 过度放牧区. Meta分析方法显示过度放牧导致中国草 地土壤有机碳损失达0.23kg C m⁻² a⁻¹(石锋等, 2009), 因此,本研究至少高估北方草地土壤有机碳0.40~ 0.48Pg C a⁻¹.

除放牧外, 开垦是影响草地生态系统的最大人 类活动之一(傅华等, 2004; Qi等, 2007). 我国约有 18.2%的耕地来自于草地开垦(樊江文等, 2002; Qi等, 2007). 草地开垦为农田对草地生态系统碳库的影响

主要表现在对土壤有机碳的影响,有关研究的结论 基本一致, 草地开垦为农田会造成土壤有机碳的严 重损失.损失可达土壤中碳素总量的20~50%. 且主要 发生表层土壤中(约20或30cm)(Davidson和Ackerman, 1993; Wang 等, 1999; Franzluebbers, 2005; Qi 等, 2007). 损失主要发生在开垦后最初几年, 并在20年 后基本趋于稳定(Houghton等, 1991; Davidson和 Ackerman, 1993; 李凌浩, 1998). 草地开垦为农田后 生态系统碳储量下降的原因可能是: (1) 与草地植被 相比,农作物碳素向土壤的分配比例减少,而农作物 的收获又进一步减少了植被向土壤输入的碳素 (McConnell和Quinn, 1988); (2) 农耕中的翻耕犁土等 措施会促进土壤呼吸作用,降低碳素在土壤中的存 留时间,而开垦时的烧荒措施则使草地地上生物量 碳释放到大气中; (3) 开垦可在一定程度上破坏土壤 团聚体结构, 使土壤有机质暴露在大气中, 加速其分 解.此外,农耕过程中的施肥措施可在一定程度上缓 解有机碳的损失(穆少杰等, 2014; 肖胜生等, 2009), 使开垦若干年后土壤有机碳出现增加的可能(陈伏生 等, 2004). 自1949年以后的50年间, 我国共开垦草地 约19.30×10⁴km²(樊江文等, 2002), 2001~2010年全国 共开垦草地约2.91×10⁴km²,其中草地开垦农田所占 比例约41.8%(吴炳芳等, 2014). 估算1961~2013年我 国共开垦草地约23.54×10⁴km²,其中草地开垦农田约 9.84×10⁴km². 就全球碳平均而言, 草地开垦成农田 导致1m深度土层内的土壤碳损失20~30%(WBGU, 1998). 因此, 基于本研究结果可得出, 土壤碳因草地 开垦农田损失约0.28~0.42Pg C.

4.4 中国草地碳库对世界草地碳库的贡献

本研究结果表明,中国草地生态系统面积约有

394.93×10⁴km², 总碳储量为59.47Pg C, 其中土壤碳 储量是植被碳储量18倍. 已有研究表明, 世界草地面 积约3510×10⁴~5650×10⁴km², 植被碳库为27.9~231Pg C, 土壤碳库为250.49~579Pg C(表3), 因此, 基于以 上研究结果可知, 中国草地生态系统约占全球草地 面积的7.0~11.3%, 植被碳储量约占全球植被碳储量 的1.3~11.3%, 土壤碳储量约占全球土壤有机碳储量 的9.7~22.5%.

5 结论

本研究表明, 1961~2013年中国草地生态系统碳 储量为59.47Pg C, 平均碳密度为15.06kg C m⁻², 其中 94.7%的碳储存在土壤有机质中. 近53年来, 草地总碳 储量以19.4Tg C a⁻¹年平均增长速率显著增长, 在草地 面积不变情况下草地生态系统碳密度以4.7g C m⁻² a⁻¹ 的增长速率呈显著的增加趋势. 在中国7个草地区, 青藏高原的年平均草地总碳储量为37.61Pg C, 占总 碳储量的63.2%.

在研究时段内,中国草地植被碳库以9.62Tg C a⁻¹ 的速率呈现极显著的增加趋势,年平均植被碳密度为 797g C m⁻² a⁻¹.其中,青藏高原植被碳库最大,占总 植被碳库的63.8%.在空间分布上,植被碳变化以增加 为主,减少主要出现在南方草地中部,内蒙古西部和 中部以及一部分青藏高原草地区.温度是植被碳库变 化的主要因素,二者相关系数可达0.85.中国草地土 壤碳储量呈波动式增加趋势,整体上以7.96Tg C a⁻¹的 速率呈现极显著的增加趋势,年平均土壤碳密度为 14.3kg C m⁻² a⁻¹.土壤碳减少主要出现在青藏高原草 地区、东北草地区、华北暖温带草地北部和东部,以 及部分南方草地区.降水影响土壤碳变化的主要因素.

世界草地面积 植被碳库		土壤碳库	中国草地占世界草地的比重(%)			粉捉水酒	
$(\times 10^4 {\rm km}^2)$	(Pg C)	(Pg C)	面积	植被碳	土壤碳	奴161术源	
5200	54.9		7.6	5.7		Whittaker和Likens(1975)	
3510		435.7	11.3		12.9	Post等(1982)	
5155	50.4		7.7	6.3		Olson等(1983)	
3500	75.0	559	11.3	4.2	10.1	WBGU(1998)	
5650	58.67	259.05	7.0	5.4	21.7	Adams等(1990)	
4160	27.9	250.49	9.5	11.3	22.5	Prentice等(1993)	
5260	71~231	579	7.5	1.3~4.4	9.7	吕超群和孙书存(2004)	

表 3 中国草地碳库对世界草地碳库的贡献

据相关文献报道,世界草地面积约3510×10⁴~5650×10⁴km²,植被碳库约27.9~231Pg C,土壤碳库为250.49~579Pg C. 据此,粗略估计中国草地生态系统约占全球草地面积的7.0~11.3%,植被碳储量约占全球植被碳储量的1.3~11.3%,土壤碳储量约占全球土壤有机碳储量的9.7~22.5%.

致谢 感谢碳专项草地野外调查组为研究提供的数据 帮助,感谢唐隽、王秋玲和宋健对研究给予的支持和帮助.

参考文献

- 陈伏生, 曾德慧, 陈广生. 2004. 开垦对草甸土有机碳的影响. 土壤 通报, 35: 413-419
- 陈世荣,王世新,周艺. 2008. 基于遥感的中国草地生产力初步计 算. 农业工程学报,24:208-212
- 陈晓鹏,尚占环.2011.中国草地生态系统碳循环研究进展.中国草 地学报,33:99-110
- 樊江文,钟华平,员旭疆. 2002. 50年来我国草地开垦状况及其生态 影响. 中国草地, 24: 69-72
- 方精云, 郭兆迪, 朴世龙, 陈安平. 2006. 1981~2000年中国陆地植被 碳汇的估算. 中国科学D辑: 地球科学, 37: 804-812
- 方精云,刘国华,徐嵩龄,王庚辰,温玉璞. 1996. 中国陆地生态系统的碳库.王庚长,温玉璞,编.温室气体浓度和排放监测及相关过程.北京:中国环境科学出版社. 391-397
- 方精云,杨元合,马文红,买买提安尼瓦尔,沈海花.2010.中国草 地生态系统碳库及其变化.中国科学:生命科学,40:566-576
- 傅华,陈亚明,王彦荣,万长贵. 2004. 阿拉善主要草地类型土壤有 机碳特征及其影响因素. 生态学报,24:469-476
- 高磊. 2013. 我国典型草地生态系统土壤碳库及影响因素研究. 硕 士学位论文. 北京: 中国地质大学. 1-72
- 高添,徐斌,杨秀春,金云翔,马海龙,李金亚,于海达.2012. 青藏 高原草地生态系统生物量碳库研究进展.地理科学进展,31: 1724-1731
- 高添. 2014. 内蒙古草地植被碳储量的时空分布及水热影响分析. 博士学位论文. 北京: 中国农业科学院. 1-81
- 韩彬, 樊江文, 钟华平. 2006. 内蒙古草地样带植物群落生物量的梯 度研究. 植物生态学报, 30: 553-562
- 韩国栋, 焦树英, 毕力格图, 敖登高娃. 2007. 短花针茅草原不同载 畜率对植物多样性和草地生产力的影响. 生态学报, 27: 182–188
- 侯学煜. 1982. 中华人民共和国植被图(1:4000000). 北京: 中国地图 出版社
- 侯学煜. 2001. 1:100万中国植被图集. 北京: 科学出版社
- 胡庆贺, 徐海峰, 张习敏, 张宇斌, 刘伦衔, 乙引. 2015. 不同管理 方式对贵州典型暖性草地土壤有机碳的影响. 江苏农业科学, 43: 330-333
- 李克让, 王绍强, 曹明奎. 2002. 中国植被和土壤碳贮量. 中国科学 D辑: 地球科学, 33: 72-80

- 李凌浩. 1998. 土地利用变化对草原生态系统土壤碳贮量的影响. 植物生态学报, 22: 300-302
- 吕超群,孙书存. 2004. 陆地生态系统碳密度格局研究概述. 植物生态学报, 28: 692-703
- 马文红,方精云,杨元合,安尼瓦尔·买买提.2010.中国北方草地生物量动态及其与气候因子的关系.中国科学:生命科学,40:632-641
- 马文红, 韩梅, 林鑫, 任艳林, 王志恒, 方精云. 2006. 内蒙古温带 草地植被的碳储量. 干旱区资源与环境, 20: 192-195
- 买买提安尼瓦尔,杨元合,郭兆迪.2006.新疆草地植被的地上生物 量.北京大学学报(自然科学版),42:521-526
- 穆少杰,周可新,陈奕兆,孙成明,李建龙. 2014. 草地生态系统碳 循环及其影响因素研究进展. 草地学报,22:439-447
- 朴世龙,方精云,贺金生,肖玉. 2004. 中国草地植被生物量及其空间分布格局. 植物生态学报,28:491-498
- 沈海花,朱言坤,赵霞,耿晓庆,高树琴,方精云. 2016. 中国草地 资源的现状分析. 科学通报, 61: 139-154
- 石锋,李玉娥,高清竹,万运帆,秦晓波,金琳,刘运通,武艳娟. 2009. 管理措施对我国草地土壤有机碳的影响. 草业科学, 26: 9-15
- 王根绪,程国栋,沈永平.2002. 青藏高原草地土壤有机碳库及其全 球意义. 冰川冻土,24:693-700
- 王思远, 刘纪远, 张增祥, 周全斌, 赵晓丽. 2010. 中国土地利用时 空特征分析. 地理学报, 6: 631-639
- 吴炳方,苑全治,颜长珍,王宗明,于信芳,李爱农,马荣华,黄进 良,陈劲松,常存,刘成林,张磊,李晓松,曾源,包安明. 2014. 21世纪前十年的中国土地覆盖变化.第四纪研究,34:723-731
- 肖胜生,董云社,齐玉春,彭琴,何亚婷,杨智杰. 2009. 草地生态 系统土壤有机碳库对人为干扰和全球变化的响应研究进展. 地 球科学进展,24:1138-1148
- 于东升,史学正,孙维侠,王洪杰,刘庆花,赵永存. 2005. 基于 1:100万土壤数据库的中国土壤有机碳密度及储量研究. 应用生 态学报,16:2279-2283
- 张峰. 2010. 中国草原碳库储量及温室气体排放量估算. 博士学位 论文. 兰州: 兰州大学. 1-86
- 张伟华,关世英. 2000. 不同牧压强度对草原土壤水分,养分及其地 上生物量的影响. 干旱区资源与环境,14:61-64
- 张一心,赵吉,王立新,马文红,梁存柱,吴婧. 2014. 不同管理措施下内蒙古草地碳汇潜势分析.内蒙古大学学报(自然科学版), 3:318-323
- 张永强, 唐艳鸿, 姜杰. 2006. 青藏高原草地生态系统土壤有机碳动态特征. 中国科学D辑: 地球科学, 36: 1140–1147
- 中华人民共和国农业部畜牧兽医司,全国畜牧兽医总站. 1996. 中 国草地资源. 北京:中国科学技术出版社
- 邹婧汝,赵新全. 2015. 围栏禁牧与放牧对草地生态系统固碳能力 的影响. 草业科学, 32: 1748-1756
- Adams J M, Faure H, Faure-Denard L, Mcglade J M, Woodward F I. 1990. Increases in terrestrial carbon storage from the Last Glacial Maximum to the present. Nature, 348: 711–714
- Davidson E A, Ackerman I L. 1993. Changes in soil carbon inventories

following cultivation of previously untilled soils. Biogeochemistry, 20: 161–193

- Fan J W, Zhong H P, Harris W, Yu G R, Wang S Q, Hu Z M, Yue Y Z. 2008. Carbon storage in the grasslands of China based on field measurements of above-and below-ground biomass. Clim Change, 86: 375–396
- Fernandez D P, Neff J C, Reynolds R L. 2008. Biogeochemical and ecological impacts of livestock grazing in semi-arid southeastern Utah, USA. J Arid Environ, 72: 777–791
- Franzluebbers A J. 2005. Soil organic carbon sequestration and agricultural greenhouse gas emissions in the southeastern USA. Soil Till Res, 83: 120–147
- Houghton R A, Skole D L, Lefkowitz D S. 1991. Changes in the landscape of Latin America between 1850 and 1985 II. Net release of CO₂ to the atmosphere. For Ecol Manage, 38: 173–199
- Liu L M, Zhao Y W, Xie H L. 2003. Study on regional characteristics of rangeland degradation of China and its control strategies for sustainable use and management. China Popul Res Environ, 13: 46–50
- Ma W H, Fang J Y, Yang Y H, Mohammat A. 2010. Biomass carbon stocks and their changes in northern China's grasslands during 1982–2006. Sci China Life Sci, 53: 841–850
- McConnell S G, Quinn M L. 1988. Soil productivity of four land use systems in southeastern Montana. Soil Sci Soc Am J, 52: 500–506
- McGuire A D, Melillo J M, Joyce L A, Kicklighter D W, Grace A L, Moore B III, Vorosmarty C J. 1992. Interactions between carbon and nitrogen dynamics in estimating net primary productivity for potential vegetation in North America. Glob Biogeochem Cycle, 6: 101–124
- Ni J. 2001. Carbon storage in terrestrial ecosystems of China: Estimates at different spatial resolutions and their responses to climate change. Clim Change, 49: 339–358
- Ni J. 2002. Carbon storage in grasslands of China. J Arid Environ, 50: 205–218
- Ni J. 2004. Forage yield-based carbon storage in grasslands of China. Clim Change, 67: 237–346
- Ojima D S, Dirks B O M, Glenn E P, Owensby C E. 1993. Assessment of C budget for grasslands and drylands of the world. Water Air Soil Pollut, 70: 95–109
- Olson J S, Watts J A, Allison L J. 1983. Carbon in live vegetation of major world ecosystems. Technical Report. Oak Ridge: Oak Ridge National Laboratory. 50–51
- Peng C, Apps M J. 1997. Contribution of China to the global carbon cycle since the last glacial maximum. Tellus B, 49: 393–408
- Piao S L, Fang J Y, Zhou L M, Tan K, Tao S. 2007. Changes in biomass carbon stocks in China's grasslands between 1982 and 1999. Glob Biogeochem Cycle, 21: GB2002
- Post W M, Emanuel W R, Zinke P J, Stangenberger A G. 1982. Soil carbon pools and world life zones. Nature, 298: 156–159
- Prentice I C, Sykes M T, Lautenschlager M, Harrison S P, Denissenko

O, Bartlein P J. 1993. Modelling global vegetation patterns and terrestrial carbon storage at the last glacial maximum. Glob Ecol Biogeogr Lett, 3: 67–76

- Qi Y C, Dong Y S, Liu J Y, Domroes M, Geng Y B, Liu L X, Liu X R, Yang X H. 2007. Effect of the conversion of grassland to spring wheat field on CO₂ emission characteristics in Inner Mongolia, China. Soil Till Res, 94: 310–320
- Raich J W, Rastetter E B, Melillo J M, Kicklighter D W, Steudler P A, Peterson B J, Vorosmarty C J. 1991. Potential net primary productivity in South America: Application of a global model. Ecol Appl, 1: 399–429
- Reeder J D, Schuman G E, Morgan J A, LeCain D R. 2004. Response of organic and inorganic carbon and nitrogen to long-term grazing of the shortgrass steppe. Environ Manage, 33: 485–495
- Schuman G E, Janzen H H, Herrick J E. 2002. Soil carbon dynamics and potential carbon sequestration by rangelands. Environ Pollut, 116: 391–396
- Scurlock J M, Hall D O. 1998. The global carbon sink: A grassland perspective. Glob Change Biol, 4: 229–233
- Scurlock J M, Johnson K, Olson R J. 2002. Estimating net primary productivity from grassland biomass dynamics measurements. Glob Change Biol, 8: 736–753
- Sui X H, Zhou G S. 2013. Carbon dynamics of temperate grassland ecosystems in China from 1951 to 2007: An analysis with a process-based biogeochemistry model. Environ Earth Sci, 68: 521–533
- Thornton P E, Running S W, White M A. 1997. Generating surfaces of daily meteorological variables over large regions of complex terrain. J Hydrol, 190: 214–251
- Thornton P E, Running S W. 1999. An improved algorithm for estimating incident daily solar radiation from measurements of temperature, humidity, and precipitation. Agric For Meteorol, 93: 211–228
- Wang G X, Ju Q, Cheng G D, Lai Y M. 2002. Soil organic carbon pool of grassland soils on the Qinghai-Tibetan Plateau and its global implication. Sci Total Environ, 291: 207–217
- Wang Y, Amundson R, Trumbore S. 1999. The impact of land use change on C turnover in soils. Glob Biogeochem Cycle, 13: 47–57
- Wissenschaftlicher Beirat der Bundesregierung Globale Umweltveränerungen (WBGU). 1998. The Accounting of biological sinks and sources under the Kyoto Protocol—A step forwards or backwards for global environmental protection. Bremerhaven: WBGU. 46
- Whittaker R H, Likens G E. 1975. The biosphere and man. In: Lieth H, Whittaker R H, eds. Primary Productivity of the Biosphere. New York: Springer-Verlag. 305–328
- Xiao X, Ojima D S, Parton W J, Chen Z, Chen D. 1995. Sensitivity of Inner Mongolia grasslands to climate change. J Biogeogr, 22: 643–648
- Xie Z B, Zhu J G, Liu G, Cadisch G, Hasegawa T, Chen C M, Sun H F, Tang H Y, Zeng Q. 2007. Soil organic carbon stocks in China and

changes from 1980s to 2000s. Glob Change Biol, 13: 1989-2007

- Yang Y H, Fang J Y, Tang Y H, Ji C J, Zheng C Y, He J S, Zhu B. 2008. Storage, patterns and controls of soil organic carbon in the Tibetan grasslands. Glob Change Biol, 14: 1592–1599
- Yang Y H, Fang J Y, Ji C J, Han W X. 2009. Above- and belowground biomass allocation in Tibetan grasslands. J Veg Sci, 20: 177–184
- Yang Y H, Fang J Y, Ma W H, Guo D L, Mohammat A. 2010a. Large-scale pattern of biomass partitioning across China's grasslands. Glob Ecol Biogeogr, 19: 268–277
- Yang Y H, Fang J Y, Ma W H, Smith P, Mohammat A, Wang S P, Wang W E. 2010b. Soil carbon stock and its changes in northern China's grasslands from 1980s to 2000s. Glob Change Biol, 16:

3036-3047

- Yu G R, Li X R, Wang Q F, Li S G. 2010. Carbon storage and its spatial pattern of terrestrial ecosystem in China. J Res Ecol, 1: 97–109
- Zhuang Q L, McGuire A D, Melillo J M. 2003. Carbon cycling in extratropical terrestrial ecosystems of the Northern Hemisphere during the 20th century: A modeling analysis of the influences of soil thermal dynamics. Tellus B, 55: 751–776
- Zhuang Q L, He J S, Lu Y, Ji L, Xiao J F, Luo T X. 2010. Carbon dynamics of terrestrial ecosystems on the Tibetan Plateau during the 20th century: An analysis with a process-based biogeochemical model. Glob Ecol Biogeogr, 19: 649–662