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Abstract: Lakes are important components for regulating carbon cycling within landscapes.
Most lakes are regarded as CO2 sources to the atmosphere, except for a few eutrophic ones.
Algal blooms are common phenomena in many eutrophic lakes and can cause many environmental
stresses, yet their effects on the net exchange of CO2 (FCO2) at large spatial scales have not been
adequately addressed. We integrated remote sensing and Eddy Covariance (EC) technologies to
investigate the effects that algal blooms have on FCO2 in the western basin of Lake Erie—a large
lake infamous for these blooms. Three years of long-term EC data (2012–2014) at two sites were
analyzed. We found that at both sites: (1) daily FCO2 significantly correlated with daily temperature,
light, and wind speed during the algal bloom periods; (2) monthly FCO2 was negatively correlated
with chlorophyll-a concentration; and (3) the year with larger algal blooms was always associated
with lower carbon emissions. We concluded that large algal blooms could reduce carbon emissions
in the western basin of Lake Erie. However, considering the complexity of processes within large
lakes, the weak relationship we found, and the potential uncertainties that remain in our estimations
of FCO2 and chlorophyll-a, we argue that additional data and analyses are needed to validate our
conclusion and examine the underlying regulatory mechanisms.
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1. Introduction

Lakes are important regulators in regional and global carbon cycling [1–5]. Carbon produced
within lakes or imported from upstream terrestrial ecosystems may be stored in the water, transported
downstream, released to the atmosphere via outgassing, and/or deposited in sediments [6,7].
Throughout terrestrial landscapes, most lakes are sources of CO2 [5,8]. When integrated into climate
models correctly, they may shift the landscape-based predictions of a CO2 flux [4]. Failing to consider
the contributions of lake components in remote sensing-based up-scaling efforts [9–11] could lead to
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unrealistic estimates of the regional carbon budget. To effectively integrate lakes into up-scaled remote
sensing products and climate models, it is necessary to understand the main carbon pools in lakes
and the major fluxes to/from lakes, as well as the driving mechanisms for the changes in these pools
and fluxes.

While the pools of key carbon species (e.g., dissolved organic carbon, DOC, in lake water) can
be readily measured, discerning the fluxes (e.g., net exchange of CO2 between the lake surface and
the atmosphere, FCO2) tends to be more problematic [1]. The FCO2 is one of the key fluxes of a
lake, yet the lack of reliable measurements has led to a poor understanding of long-term change
and various driving mechanisms. Internal lake processes such as algal productivity and microbial
respiration/mineralization, for example, can fix or release CO2 in the water and directly affect FCO2

by changing CO2 partial pressure (pCO2). Algae can have negligible or significant influences on
FCO2/pCO2, depending on a lake’s trophic state, such as the degree of oligotrophy or eutrophy [12–14].
Previous studies have reported that FCO2 and pCO2 in water may be related [15] or unrelated [16]
to the degree of primary production in phytoplankton. Despite the efforts being made, previous
studies sparsely sampled over space and time (e.g., only one or two samples at a few locations
per week/month). Large uncertainties may result from such extrapolations [17]. Consequently, the
possible influence of algae on FCO2 merits further examination over longer periods and across larger
spatial scales.

Lake-atmosphere CO2 exchanges traditionally have been measured via floating chambers with
CO2 sensors [18,19] or by CO2 concentrations and gas transfer coefficients [20,21]. These methods have
respective advantages, but cannot provide continuous, long-term measurements when observations
are required at large spatial scales (e.g., >10 km2). The eddy covariance (EC) technique, which
continuously and directly measures the net exchanges of target gas scalars between the atmosphere
and underlying surface, provides new opportunities to adequately quantify lake-atmosphere CO2

exchange. In the last two decades, this EC technology has been extensively applied in terrestrial
ecosystems to examine the magnitude and driving factors of carbon flux [22–24]. Depending on the EC
tower design (e.g., the height of instruments and surface roughness), observations are available with
footprints that range between dozens to hundreds of km2. A few publications have reported the EC
measurements of CO2 fluxes over lakes, however, they exclusively measured small lakes [13,18,25–27].
These studies observed diurnal and intra-annual changes of FCO2 and emphasized the important
influences that convective mixing and wind have on gas exchange; but no consideration was given
to the effects of algae, probably due to the fact that algae was not a prominent characteristic in these
small lakes.

Algal blooms, especially harmful algal blooms (HABs), comprise important processes in many
lakes worldwide. In previous literature, environmental problems caused by HABs have been
reported [28–30]; but the association between algal biomass and FCO2 remains poorly understood
for large lakes that are susceptible to HABs (e.g., Lake Erie). Small lakes have limited pelagic zones,
suggesting that algal biomass may be a minor part of the lake carbon budget. Eutrophic large
lakes however, are different, because algae can constitute the most important biological features that
determine the magnitude of the ecosystem primary productivity and the ecosystem carbon budget due
to large surface area. Lake Erie is the 12th largest lake on Earth by surface area (25,667 km2). Its trophic
state varies both spatially and temporally, but the western basin is infamous for HABs and eutrophic
conditions, with algal productivity comprising an important internal carbon process [31,32]. The large
size of Lake Erie and its associated spatiotemporal variation require new techniques that measure both
algal biomass and FCO2 at an equally large spatial scale in order to study their interaction. EC is a
preferred method to measure FCO2, rather than traditional floating chambers, due to its larger footprint
and higher frequency, which provide enough data in time and space to study the flux dynamics of a
large lake. Algal blooms in lakes traditionally are monitored by sampling chlorophyll-a concentration
at multiple locations. This approach may readily achieve high frequency sampling with current sensor
techniques, but cannot be used across a large spatial scale. Fortunately, aerial chlorophyll-a can be



Remote Sens. 2017, 9, 44 3 of 19

retrieved via remote sensing data [33,34], which matches well with the footprint of EC data. While the
integration of remote sensing and EC measurements has been widely applied to study vegetation
biomass, gross primary productivity, and evapotranspiration of land ecosystems [9,35], this approach
rarely has been applied to the study of the various effects that algae have on ecosystem functions in
large lakes.

Previous modeling work suggests that high algae productivity can switch a lake from a net
CO2 source to a net sink to the atmosphere [12]. However, the potential long-term effects of algae
growth on FCO2 in open water of large lakes have not been carefully investigated using long-term
EC measurements of FCO2 at comparable and meaningful scales. In this study, the EC technique was
used to measure FCO2 over the western basin of Lake Erie, while remotely-sensed algal biomass was
estimated from MODIS that matches the footprint of the carbon flux measurements. The data from
these two techniques provide a great opportunity for exploring the long-term relationship between
algal biomass and FCO2 at a large spatial scale (4 × 4 km2), which comprises our major study objectives.
We hypothesized that algae can significantly reduce carbon emissions due to its carbon assimilation
capability. We also hypothesized that stronger correlations would be observed between FCO2 and
meteorological variables during periods with algal blooms than those without, because algal biomass
would react to the changes in meteorological conditions during blooms.

2. Materials and Methods

2.1. Study Area

Lake Erie is the fourth largest lake by surface area in North America and is well known for HAB
events due to cultural eutrophication, especially in its shallow western basin (Figure 1). The western
basin comprises about one-fifth of Lake Erie’s total surface area and is naturally delimitated from
the deeper central basin by bedrock islands, reefs, and shoals [36]. Following the 1972 Great Lakes
Water Quality Agreement (GLWQA), which set maximum target phosphorus (P) loads, western Lake
Erie experienced a period of ecological improvement with decreased algal blooms from the late 1970s
through to the mid-1990s. However, it has since returned to eutrophic conditions and frequent HAB
events, accompanied by change in the dominant phytoplankton species to Microcystis aeruginosa and
other cyanobacteria [32]. The Maumee River and the Detroit River strongly influence the turbidly
of Western Lake Erie with inflows that bring high loads of suspended sediments [37]. Additionally,
inflows from the Maumee River contain rich nutrients from the agriculture-dominated watersheds
that spur algae growth [38].

We installed two permanent EC flux stations in October 2011 in western Lake Erie. The first
one was installed on top of the NOAA (National Oceanic and Atmospheric Administration) No. 2
Light house (41.8314◦N, 83.2006◦W) and is hereafter termed the LightH site. The second station is
on the city of Toledo’s water intake crib (41.7167◦N, 83.2667◦W) and is hereafter termed the Crib site
(Figure 1). The LightH site is located ~12 km away from the nearest lake coast while the Crib site is
~4 km from the coast. The water at the LightH site is deeper (~7.5 m) than that at the Crib site (~4.8 m),
and is usually clearer than the Crib site (Figure 1). The equipment at the two sites has been routinely
maintained and in continual operation since October 2011.
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Figure 1. The study area: western Lake Erie. The two eddy-covariance (EC) towers are marked with 
a black triangle and a rectangle for the Light House (LightH) site and Crib site, respectively. The black 
circles represent the locations where water samples were taken for chlorophyll-a extraction at 10–14 
day intervals. A MODIS true color image shows the highly turbid water (the top-right) in western 
Lake Erie. The Crib site is more turbid than the LightH site because it is closer to the mouth of the 
Maumee River and the shore.  

2.2. Lake Carbon Cycling and Approaches 

Our hypotheses are based on carbon cycling in an idealized lake system surrounded by a 
terrestrial landscape by considering the balance among the major fluxes to/from the lake and internal 
carbon processes. The major fluxes include: (1) a portion of the biomass that is fixed in upland 
terrestrial ecosystems, mineralized, and then exported as dissolved inorganic carbon (DIC) in both 
groundwater and surface water, (2) another portion of terrestrial biomass that leaches through 
surface water as organic carbon (DOC) or translocated as particulate organic carbon (POC), (3) a 
portion of the lake’s POC settles into sediment, (4) the POC in sediments that slowly mineralizes and 
releases DIC into the water column, (5) all forms of carbon are exported downstream by outflow 
water from the lake, and (6) the CO2 partial pressure gradient between the lake and the atmosphere 
that drives the net atmospheric flux (FCO2) of DIC. The internal processes that cycle carbon in the lake 
through organic and inorganic forms and include: (a) primary producers (i.e., algae) that fix DIC 
through photosynthesis to POC, (b) the part of the POC exudes as DOC, and (c) the DIC and DOC 
that are produced in water with POC breakdown. Microbial respiration and photo-degradation 
mineralize DOC to DIC. With this concept model, when algal productivity becomes a significant 
carbon process in the lake, the CO2 partial pressure in the water would be reduced through 
conversion of DIC to POC, leading to a reduced carbon emissions. In the present study, we 
continuously measured FCO2 using EC techniques and estimated the average chlorophyll-a 
concentration by remote sensing at similar footprints to the EC towers. A controlled experiment is 
not possible at such a scale. However, if a negative relationship between FCO2 and chlorophyll-a were 
found, it would provide meaningful insight and test our hypothesis as to whether algal growth can 
reduce carbon emissions. 

2.3. FCO2 and Meteorological Measurements  

Two open-path EC systems were installed at both sites ~15 m above the lake. Each EC system 
consists of an infrared gas analyzer (IRGA, Model LI-7500A, LI-COR, Lincoln, NE, USA), which 

Figure 1. The study area: western Lake Erie. The two eddy-covariance (EC) towers are marked with a
black triangle and a rectangle for the Light House (LightH) site and Crib site, respectively. The black
circles represent the locations where water samples were taken for chlorophyll-a extraction at 10–14 day
intervals. A MODIS true color image shows the highly turbid water (the top-right) in western Lake Erie.
The Crib site is more turbid than the LightH site because it is closer to the mouth of the Maumee River
and the shore.

2.2. Lake Carbon Cycling and Approaches

Our hypotheses are based on carbon cycling in an idealized lake system surrounded by a terrestrial
landscape by considering the balance among the major fluxes to/from the lake and internal carbon
processes. The major fluxes include: (1) a portion of the biomass that is fixed in upland terrestrial
ecosystems, mineralized, and then exported as dissolved inorganic carbon (DIC) in both groundwater
and surface water, (2) another portion of terrestrial biomass that leaches through surface water as
organic carbon (DOC) or translocated as particulate organic carbon (POC), (3) a portion of the lake’s
POC settles into sediment, (4) the POC in sediments that slowly mineralizes and releases DIC into
the water column, (5) all forms of carbon are exported downstream by outflow water from the lake,
and (6) the CO2 partial pressure gradient between the lake and the atmosphere that drives the net
atmospheric flux (FCO2) of DIC. The internal processes that cycle carbon in the lake through organic and
inorganic forms and include: (a) primary producers (i.e., algae) that fix DIC through photosynthesis to
POC, (b) the part of the POC exudes as DOC, and (c) the DIC and DOC that are produced in water
with POC breakdown. Microbial respiration and photo-degradation mineralize DOC to DIC. With this
concept model, when algal productivity becomes a significant carbon process in the lake, the CO2

partial pressure in the water would be reduced through conversion of DIC to POC, leading to a
reduced carbon emissions. In the present study, we continuously measured FCO2 using EC techniques
and estimated the average chlorophyll-a concentration by remote sensing at similar footprints to
the EC towers. A controlled experiment is not possible at such a scale. However, if a negative
relationship between FCO2 and chlorophyll-a were found, it would provide meaningful insight and
test our hypothesis as to whether algal growth can reduce carbon emissions.

2.3. FCO2 and Meteorological Measurements

Two open-path EC systems were installed at both sites ~15 m above the lake. Each EC system
consists of an infrared gas analyzer (IRGA, Model LI-7500A, LI-COR, Lincoln, NE, USA), which
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measures high-frequency (10 Hz) CO2 and water vapor concentrations, and a CSAT3 three-dimensional
sonic anemometer (Campbell Scientific Inc. CSI, Logan, UT, USA), which measures three-dimensional
wind velocities and sonic temperatures. The processing of carbon flux and meteorological variables
followed the methods of Shao et al. [39]. Briefly, raw data spikes were removed and the diagnostic
signals from the CSAT3 and LI-7500A were used to detect and filter out any periods of instrument
malfunction. Wind coordinates were rotated to the mean streamline plane that was calculated from the
wind data over an entire year [40], and temperature was corrected for changes in atmospheric humidity
and pressure [41]. FCO2 between the water surface and the atmosphere was calculated at 30-min
intervals as covariance of vertical wind velocity and CO2 concentration with Webb-Pearman-Leuning
corrections [42,43]. The self-heating effect of the IRGA during winter also was corrected [44].
Additionally, stationarity and integral turbulent characteristics of each 30-min flux were calculated to
filter out data during poor turbulence conditions [45]. Micrometeorological variables, including
photosynthetically active radiation (PAR) (LI-190, LI-COR), horizontal wind speed (U), and air
temperature (Ta) (HMP45C, CSI) were measured at the same height as the EC system and stored
at 30-min intervals. To prevent contamination of land-originated flux signals, we filtered out periods
that had less than 80% flux contributed by the 0–4 km fetch. After the data quality was checked,
the 30-min FCO2 time series showed 60% gaps per year over the three-year time series. This gap
percentage is higher than those of terrestrial EC sites in the same geographic region [46–48], however,
it is similar to other aquatic flux measurements [49,50]. To further ensure data accuracy, the co-spectra
of temperature, H2O, and CO2 with the vertical wind speed were calculated. The expected shape
(i.e., the logarithmic following a −4/3 slope against normalized frequency) was found, suggesting that
the sensors accurately resolved the high-frequency contributions to the covariance [39]. Data collected
in 2012, 2013, and 2014 were used in this study.

2.4. FCO2 Gap Filling

To calculate daily to annual FCO2, the remaining gaps after the quality control process were filled
by applying the marginal distribution sampling (MDS) [51] method because: (1) CO2 and water fluxes
in lake ecosystems have been found to be directly coupled less with phytoplankton succession than
those in terrestrial ecosystems (Vesala et al. 2006), and (2) the autocorrelation structure in the flux
data was used and had incorporated self-dependency (Reichstein et al. 2005), providing a robust
approach for integrating the daily, monthly, or annual fluxes. The gap-filled data were used while
integrating the half-hourly FCO2 to daily and monthly values. Positive values indicated a flux up to
the atmosphere and negative values indicated a flux down into the water. To assess the uncertainty
caused by gap-filling, the MDS was compared to two other widely used gap-filling techniques: the
monthly mean actual measurement and the mean diurnal variation (MDV) methods [52]. We found
that different gap-filling techniques yielded an average difference of about 10% on 30-min values,
which were further reduced when the values were aggregated into weekly and monthly ones [39].
The average duration of gaps was about 2.35 h, but a few long gaps lasted five to seven days. To further
improve data quality for statistical analysis, we only used integrated daily FCO2 of a day with less than
50% of the 30-min gaps, and integrated monthly FCO2 for a month with less than 60% of the 30-min
gaps. This ensured that the monthly mean values based on filled data had the same sign as the mean
monthly flux based on data without gap-filling.

2.5. Field Measurement Chlorophyll-a

Chlorophyll-a concentration was measured and estimated to represent algae biomass. Water was
sampled for chlorophyll-a concentration at six locations in western Lake Erie (Figure 1) at 10–14 days
intervals between April and October in 2002 and 2013. At each sampling location and event, two 50 mL
replicate water samples were collected at the surface and at 1 m below. Back at the lab, the water
samples were filtered using glass-fiber filters (GF/F), which retained fine particles down to 0.7 µm.
The filters were desiccated and stored in an ultra-cold freezer (−70 ◦C). Chlorophyll-a was extracted
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from the filters using dimethylformamide and analyzed fluorometrically on a Turner fluorometer [53].
These field sampling data were used to validate the estimates of chlorophyll-a concentrations using
remote sensing products.

2.6. MODIS Chlorophyll-a Estimation

Chlorophyll-a concentration was also retrieved from remote sensing radioactive measurements
by the MODIS sensor on NASA’s Aqua MODIS satellite, which is used for statistical analysis.
The empirical OC3 algorithm [34] was used, which assumed that a relationship (usually linear) exists
between chlorophyll-a and some functions of the radiometric measurements. Empirical algorithms
such as OC3 are treated with skepticism in coastal and inland waters due to the complexity of optical
properties, but are useful and produce chlorophyll-a concentrations that are proportional to observed
concentrations [54]. Semi-analytical algorithms that inversely model chlorophyll-a from inherent
optical properties of color producing agents (e.g., chlorophyll-a, colored dissolved organic carbon, and
suspended particulates) are designed to have an advantage over empirical algorithms for optically
complex water. However, they are difficult to adapt into a reliable model [55]. Semi/quasi analytical
algorithms, including GIOP [56] and GSM [55] with their standard configuration, were compared
with OC3 using our field sampled chlorophyll-a, which did not outperform OC3. Based on our
literature review, it appears that in many cases empirical algorithms performed significantly better
than semi-analytical algorithms in the Laurentian Great Lakes.

Standard NASA MODIS chlorophyll-a products were produced using ocean bands that were
designed with high sensitivity over the dynamic range of reflectance that are typical of open oceans.
However, western Lake Erie is an inland water body with high turbidity, suggesting it is possible for
such ocean bands to be saturated [57]. We thus calculated our own 250 m resolution chlorophyll-a
products (Level-2) from the MODIS Level-1A reflectance data with the inclusion of the land/cloud
bands. The land/cloud bands with both increased spatial resolution and reduced sensitivity over
a broader dynamic range can improve the retrieval of chlorophyll-a over inland water [57]. A total
of 1663 Level-1A MODIS images with cloud cover less than 10% were downloaded from NASA’s
ocean color website [58] for processing. MODIS geolocation files and Level-1B at-aperture radiances
then were produced from Level-1A data using SeaDAS 7.1. From the geolocation files and Level-1B
files, 250-m resolution MODIS Level-2 images with chlorophyll-a values then were generated using
the OC3 algorithm. Quality flags that indicated cloudy conditions, atmospheric correction failure,
severe sun glint, saturation of bands, etc., were used to mask out poor quality pixels for each image.
We excluded values outside of the range 0.01–100 µg/L, because OC3 was determined empirically
with a global dataset, in which the chlorophyll-a distribution range is approximately 0.008–90 µg/L.
Data quality control generated considerable spatial and temporal gaps for MODIS chlorophyll-a
concentrations. Spatial and temporal binning algorithms [59] thus were used to determine daily and
monthly composites products (Level-3) at 4-km spatial resolution. This resolution was chosen to match
the footprint of the EC towers, because our footprint analyses suggested that >75% of the cumulative
fluxes were contributed by areas within a 2-km radius of the tower [39]. One advantage of using
remote-sensed chlorophyll-a is that it measured the portion of a water column that transmitted light,
and spatially matched the footprints of the EC towers better than if the chlorophyll-a were extracted
from location-specific sampling. Chlorophyll-a values of the pixels centered on both EC towers were
extracted for further analysis with flux and meteorological data. All remote sensing data processes
were conducted using SeaDAS 7.1 and ENVI 5.1.

The MODIS chlorophyll-a estimation and field-sampled data on the same day of the same location
were compared for validation using linear regression (R2 = 0.42, n = 146, p < 0.05, Figure 2a), which
suggested accuracy ranks among the range of reported R2 of applications in the Great Lakes [54].
Whereas this accuracy is good for examining general spatial patterns of algal blooms [30,54], it may
not be sufficient for quantitative analysis. However, data accuracy is substantially improved (R2 = 0.79,
n = 36, p < 0.05, Figure 2b) if we compare MODIS chlorophyll-a with field-sampled chlorophyll-a by
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taking the average over space (all points sampled in western Lake Erie) and time (for an entire month).
As our regression analysis was based on monthly averages extracted from a 2 × 2 km2 space coverage
around the EC towers, this accuracy was deemed acceptable for our application.

1 
 

 

 

Figure 2. The estimated chlorophyll-a concentration from MODIS was compared with in situ field
sampling: (a) each MODIS chlorophyll-a value was extracted from the pixel centered at field sampling
location and compared with the sampled chlorophyll-a at that location of the same day, (b) all samples
at different locations but within a month were averaged and compared with the average MODIS
chlorophyll-a value of the same month at pixels centered on these locations.

2.7. Statistical Analysis

Data were first explored to check normality. Chlorophyll-a concentration was log-normally
distributed, while other data all were approximately normally distributed. Therefore, chlorophyll-a
data were log-transformed (natural logarithms). To examine whether algal biomass affects the
association between meteorological conditions and FCO2 at high frequencies, Pearson’s correlation
analysis between 30-min values of FCO2 and PAR, Ta, and U were examined in days with algal blooms
(chlorophyll-a ≥ 10 µg/L) and without chlorophyll-a <10 µg/L. Similar Pearson’s correlation analyses
of daily values compared results between months with algal blooms (chlorophyll-a ≥ 10 µg/L) and
those without blooms (chlorophyll-a < 10 µg/L). A threshold of 10 µg/L chlorophyll-a was used
based on literature-reported thresholds for HABs [60]. Based on observed chlorophyll-a by MODIS,
algal bloom months included August and September in 2012 and 2014, and August–October in
2013. Note that, because the mean values were used, not every day in an algal bloom month was
a bloom day. To examine whether chlorophyll-a could drive changes of FCO2 at seasonal to annual
scales/cycles, the potential causal relationship between monthly chlorophyll-a concentrations and
FCO2 was explored using regression analysis with monthly mean values. We did not include the
analysis of weekly chlorophyll-a concentrations and FCO2 to examine the same relationship at seasonal
to annual scales/cycles because: (1) the data size was smaller than monthly data, as there were not
many weeks in common that passed our data quality checks, and (2) averaging data by week reduced
random noise/error less than averaging the data by month.
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The same analyses were applied separately to the LightH and Crib sites. All statistical analyses
were performed using the R platform (R Development Core Team, 2014, version 3.1.1).

3. Results

3.1. Algal Growth

Western Lake Erie experienced similar seasonal patterns of algal growth over the three-year study
period (i.e., 2012, 2013 and 2014), with higher chlorophyll-a concentrations occurring in August to
October and lower concentrations in other months (Figure 3). Based on the temporal and spatial
distributions of chlorophyll-a, the algal blooms started in late summer and initiated near the coast.
In 2012 and 2014, the largest algal blooms, measured by both concentration and area, occurred in
August and September, whereas in 2013 a severe algal bloom continued from August through October.
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3.2. Changes in FCO2

Seasonal variation of FCO2 was observed at both sites based on monthly mean values (Figure 4).
During algal bloom months in late summer and early fall, lower, negative FCO2 to the atmosphere was
observed along with many events of carbon absorption. The average FCO2 in September was −0.41,
−0.52 and −0.32 in 2012, 2013 and 2014, respectively, at the LightH; the average FCO2 in October was
−0.82, −0.71 and −0.63 in 2012, 2013 and 2014, respectively at the Crib. Daily FCO2 at both sites also
showed that negative FCO2 occurred more often in late summer and early fall than those at other times
(Figure 4). Short substantial CO2 absorption events could happen repeatedly during July through
October, along with large emission events, resulting in a greater FCO2 variation during the algal bloom
months than that in other times (Figure 4).
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Figure 4. The daily average FCO2 at the Crib (CB) (a) and LightH sites; (b) in 2012–2014; and the
monthly average FCO2 at the Crib; (c) and at the LightH sites ;(d) in 2012–2014.

3.3. Meteorological Variables and FCO2

The relationships for the 30-min means of meteorological variables were similar between days
with an algal bloom and days without (Figure 5). FCO2 was not significantly correlated to any of the
meteorological variables (i.e., PAR, Ta, and U) during the nighttime or daytime at either site (Figure 5).
However, the relationship between daily means of the meteorological variables and FCO2 differed
between months with algal blooms (August–September in 2012, 2014, and August–October in 2013)
and those without (remaining months) (Figure 6). PAR, Ta, and U were significantly correlated with
daily average FCO2 during algal bloom months at both sites (Figure 6).
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Figure 5. Changes in 30-min FCO2 with photosynthetically active radiation (PAR) (a) air temperature 
(Ta) (b), and wind speed (U) (c) during algal bloom days (≥10 µg/L) and non-algal bloom days (<10 
µg/L) and changes at the LightH site and the Crib site. There appeared no obvious linear/nonlinear 
relationships between FCO2 and the three meteorological variable during both day and night periods. 
Sixty-five and sixty-one algal bloom days were observed for the LightH and Crib sites, respectively. 

Figure 5. Changes in 30-min FCO2 with photosynthetically active radiation (PAR) (a) air temperature
(Ta) (b), and wind speed (U) (c) during algal bloom days (≥10 µg/L) and non-algal bloom
days (<10 µg/L) and changes at the LightH site and the Crib site. There appeared no obvious
linear/nonlinear relationships between FCO2 and the three meteorological variable during both day
and night periods. Sixty-five and sixty-one algal bloom days were observed for the LightH and Crib
sites, respectively.
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Figure 6. (a–c) Changes of daily FCO2 with photosynthetically active radiation (PAR), air temperature
(Ta), and wind speed (U) at the LightH and Crib sites during algal bloom months and non-algal bloom
months. Significant correlations were observed during algal bloom months (p < 0.05) but not for
non-bloom months (p > 0.05).

3.4. Chlorophyll-a and FCO2

High monthly chlorophyll-a at both the LightH and Crib sites caused monthly mean FCO2 to
decline according to the regression analysis (R2 = 0.21 and 0.08, respectively) (Figure 7a,b). The low
p-values suggested that this negative relationship was statistically significant at the LightH site,
but not at the Crib site (Figure 7a,b). Although each site had similar meteorological conditions for
different years (Table 1), the year with the highest chlorophyll-a (i.e., 2013) also had the smallest FCO2

(Figure 7c,d), and vice versa. The relationship between monthly chlorophyll-a and FCO2 changed
with the magnitude of algal blooms. At each site, a stronger and more significant negative correlation
was observed in 2013, which had larger algal blooms than in 2012 and 2014, which had smaller algal
blooms (Figure 8).



Remote Sens. 2017, 9, 44 12 of 19

Table 1. The mean values (±standard deviation) of wind speed (U), air temperature (Ta), and
photosynthetically active radiation (PAR) April–November at the LightH and Crib sites. PAR values
used in this study were cross-validated between the two sites; thus, the same values are reported.

Site Year U (m·s−1) Ta (◦C) PAR (mol·m−2·day−1)

LightH
2012 5.55 ± 2.20 16.6 ± 7.5 32.64 ± 15.2
2013 6.37 ± 2.22 15.9 ± 7.6 30.72 ± 13.9
2014 6.39 ± 2.27 15.9 ± 6.2 29.91 ± 13.8

Crib
2012 4.93 ± 2.04 16.6 ± 7.4 32.64 ± 15.2
2013 5.50 ± 2.10 15.4 ± 7.4 30.72 ± 13.9
2014 5.36 ± 2.21 15.3 ± 6.2 29.91 ± 13.8
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Figure 7. Changes in monthly mean chlorophyll-a during the study period at the Crib (a) and LightH
(b) sites and inter-annual variations in mean chlorophyll-a (April–November) at the Crib (c) and LightH
(d) sites.
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Figure 8. Changes in the relationship between monthly mean chlorophyll-a and FCO2 over different
years (2012–2014) at the LightH (top) and Crib sites (bottom). The relationship was stronger in 2013,
which experienced larger algal blooms than that in other years.
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4. Discussion

4.1. FCO2 and the Potential Drivers

Most temperate lakes have been reported as net carbon sources to the atmosphere, but some
productive lakes instead comprise net carbon sinks [6,12]. The present research did not aim to
determine whether western Lake Erie served as a net atmospheric sink or source on an annual scale.
However, a previously published study [39] using data from the LightH site suggested that western
Lake Erie was indeed a net CO2 source throughout a measurement year. Here, we demonstrated that
the Crib site (which is closer to the shore and has greater water turbidity) emitted more CO2 than the
LightH site during the study periods (Figures 3 and 6). Thus, we conclude that the Crib site was a
stronger net source than the LightH Site. Spatial variation of Fco2 appeared to characterize western
Lake Erie.

Studies using methods other than EC continuous measurement have suggested that many factors
may affect carbon emissions [1,12,61,62], including landscape characteristics in the surrounding
watershed, climate and meteorology, nutrients and chlorophyll-a, and lake physical characteristics.
The present study, however, focused on the role of algal biomass/chlorophyll-a. Meteorological
variables alone were not significantly related to 30-min FCO2, whether during days with algae blooms
or not. These do not contradict previous findings that meteorology and chlorophyll-a are important
drivers of lake carbon cycling, but rather suggest difficulty in diagnosing the drivers of lake ecosystem
metabolism with high-frequency data [62]. Likewise, studies found that even in more productive
terrestrial ecosystems, no single meteorological variable or biotic variable was identified as the sole
driver of FCO2 at time scales less than an hour [22,23,48]. However, weak but significant correlation
between daily values of meteorological variables and FCO2 were observed during algal bloom months
(Figure 5), suggesting that stronger internal processes (e.g., photosynthesis and respiration) were
interacting with meteorological conditions during the algal blooms [61,62]. We noted that PAR was
positively, rather than negatively, correlated with FCO2 at both sites, i.e., high PAR was associated with
increased CO2 emission (Figure 6). This is likely because of the high correlation between daily air
temperature and PAR (r = 0.59, n = 1047 for both sites). Algal blooms extended from late summer
to fall in western Lake Erie, but peaked during the fall when water mixing/turnover created ideal
nutrients, temperature, and light conditions [63]. As a result, carbon absorption tended to happen in
early fall when both light and temperature favored algal growth, but may not have been high enough
to spur strong respiration. In contrast, PAR reached the highest level during summer, but the algal
growth might have been limited by lack of nutrients caused by water stratification and prohibited by
excessively strong light. Reduced carbon emissions with algal growth reflected the negative correlation
between daily wind speed and FCO2 during algal bloom months (Figure 6). Strong winds can accelerate
the CO2 exchange between the water and the atmosphere by enhancing atmosphere turbulence and
surface water fluctuation. When CO2 was unsaturated in surface water due to depletion by algae,
strong winds might have accelerated the dissolution of atmosphere CO2. While monthly mean values
of chlorophyll-a and FCO2 were negatively correlated, daily mean values were not. This suggests that
significant algal biomass effect was observable at relatively long-term scales (e.g., over a year’s course).
In other lake systems, chlorophyll-a likewise ranked as one of the most important drivers of gross and
net primary productivity, but were difficult to resolve at daily scales due to seasonal variations [62].
Notably, the relationships among chlorophyll-a and meteorological variables varied across scale
(i.e., 30-min, daily, and monthly means) and differed between our two lake sites. This means that
spatiotemporal variation of drivers must be considered when upscaling carbon flux estimations over
the lake surface.

4.2. Algal Blooms and Carbon Emissions

Most temperate lakes act as net carbon sources to the atmosphere due to the high amount of
allochthonous carbon inputs [4,5,14]. Lake models, however, have suggested that eutrophic conditions
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can increase the ratio of autochthonous to allochthonous carbon—thereby reducing carbon emissions
and sometimes turning a lake into a net carbon sink [12]. Observations in some of the world’s
largest lakes also have suggested that high annual productivity was positively correlated with burial
efficiency and negatively correlated with atmospheric carbon emissions [15]. Under-saturation of CO2

was observed in many temperate eutrophic lakes, which implies possible atmospheric uptake [64].
Previous literature has found that, during algal growing seasons, western Lake Erie may act as a small
carbon sink to the atmosphere [39]. We also observed that in years with more algal biomass, there were
lower carbon emissions during April–November at both the LightH and Crib sites. Elevated primary
production during algal blooms can draw down CO2 to levels below the atmospheric equilibrium and
lead to CO2 absorption (Figure 4). Therefore, our findings are consistent with previous findings and
support the hypothesis that algal blooms can reduce carbon emissions to the atmosphere in western
Lake Erie.

The effect that algal growth has on reduced carbon emissions, however, is small. Only a weak
relationship between chlorophyll-a concentrations and FCO2 was observed. While nutrient-driven
primary production was shown to decrease CO2 concentration in temperate eutrophic lakes, the
observed correlation was not strong [64]. This weak observed correlation might be due to the
contribution of allochthonous carbon (i.e., terrestrial carbon subsidies) to the lake’s carbon processes.
It is known that terrestrial carbon subsidies increase CO2 flux from lake ecosystems [65] and
might counteract CO2 uptake by algae. Western Lake Erie also receives abundant allochthonous
organic materials, which could result in a low ratio of algal primary productivity to heterotrophic
mineralization, dampening the effects of chlorophyll-a on CO2 flux. If less allochthonous carbon
was received, we would expect a stronger relationship between chlorophyll-a concentrations and
FCO2. In contrast, greater effects on carbon emissions might also be observed in larger algal
bloom events (Figure 8), since they would increase the ratio of algal primary productivity to
heterotrophic mineralization.

4.3. Limitations and Future Research

Several shortfalls exist in this pioneering research that explores the regulatory role algae has in
net CO2 exchange between the lake and the atmosphere. The first limitation is inherited from data
uncertainty for both chlorophyll-a and FCO2. The negative correlation between chlorophyll-a and FCO2

was not statistically significant at the Crib site, likely because that site is located near the mouth of
the Maumee River where the water is more heterotrophic than that at the LightH site. Uncertainties
associated with the data also may play a role, including for the chlorophyll-a and FCO2 estimates.
For FCO2, although random errors in the flux measurements were resolved by averaging them to
monthly mean values [66], gap-filling may have introduced other uncertainties. This is especially
critical because data gaps comprised ~60% after QA/QC of the raw fluxes. Future efforts will need to
reduce data gaps. Our data process for calculating FCO2 was based on that for terrestrial ecosystems.
The EC community needs to develop a robust protocol for processing winter flux over freezing water.
Chlorophyll-a was estimated with the OC3 algorithm from MODIS. This algorithm may have led
to more uncertainties at the Crib site because of its high turbidity and shallowness of the water.
Alternative algorithms for chlorophyll-a estimation in inland waters might be achieved by collecting
concentration and spectra of main color-producing agents (e.g., chlorophyll-a, CDOM, and mineral
particulates) to develop localized analytical models [33]. MODIS products are limited by coarse spatial
resolutions and low time coverage during poor atmospheric conditions. Thus, they are not able to fully
capture the spatiotemporal variation of algal concentrations discerned by higher resolution data [62,67].
For our study sites, one plausible solution is to apply different sensors onboard an unmanned aerial
vehicle (UAV) to sample waterscapes of different water conditions with optical sensors of multiple
bands. Frequent flights during algal bloom periods would provide us with a more accurate estimation
of algal biomass and productivity. With these data and improved algorithms, we expect much stronger
relationships between algal distribution/dynamics and FCO2.
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Another limitation of the study is that we were unable to trace the amount of carbon fixed/released
by algae. If larger algal blooms in summer and fall also lead to more mineralization in winter then,
within an annual cycle, the effects of algal blooms may vary. However, mineralization and carbon
emissions should be low during winter low temperatures and ice freeze, and there is evidence from both
in situ measurements and modeling that sedimentation is in proportion to primary production [12].
Therefore, we believe that even in an annual cycle, algal growth would be able to reduce carbon
emissions and increase sedimentation. To prove this assumption, future studies should include
valid measurements of winter flux as well as measurements/estimation of the burial rate of algae.
As introduced earlier in this paper, FCO2 represents the net exchange between the lake surface and
the atmosphere, which results from multiple physical and ecological processes. To quantitatively
separate the contributions of algae to FCO2, controlled experiments (e.g., mesocosms of different algal
concentration, temperature, and turbidity) would be needed.

Finally, chlorophyll-a is a surrogate measure of algal biomass, which is not always proportional
to productivity. Chlorophyll-a concentration obviously is not the sole factor that can influence
productivity. Meteorological conditions, nutrient availability, and phytoplankton species composition
are well-known factors that may directly or indirectly drive changes in productivity [12,61,62].
Moreover, trophic cascading might have a significant effect on the productivity of algae as well [66].
These multiple effects may decrease the coupling of chlorophyll-a and productivity, leading to a weak
relationship between chlorophyll-a and FCO2. In addition, other factors may have caused a lag between
peak biomass and peak productivity as well. For example, fluctuations in algal productivity do not
cascade immediately with grazing, and after reaching maximal productivity due to optimal nutrients,
temperature, and light, biomass/chlorophyll-a would keep accumulating if it still exceeds respiration.
Although we could not resolve this complexity in this initial study, future research should focus on
modeling productivity continuously in relation to FCO2. Recent application of Oxygen-18 (i.e., 18O—a
natural, stable isotope of oxygen) [68] appears to be a plausible solution to directly quantify growth and
biomass accumulation (i.e., productivity or carbon assimilation); however, models will be necessary
to upscale for larger studies. With biomass used as a proxy, a lag effect may be worth examining at
different scales using sequential time series data.

5. Conclusions

This research was the first step towards understanding the effects of algal blooms on FCO2 in
a large eutrophic lake—in this case, Lake Erie. We demonstrated the relationship between algal
growth/blooms and FCO2 at a spatial scale larger than previous observational studies. Results showed
that the monthly mean values of algal chlorophyll-a concentrations and FCO2 were negatively correlated
in western Lake Erie. We also found that during algal bloom months, the daily mean values of
important meteorological variables (e.g., Ta, PAR and U), were significantly related to daily FCO2 due
to active internal carbon-related processes. These relationships were not strong and varied spatially,
but overall supported our hypothesis that algal growth can reduce carbon emissions. However,
considering the complexity of the regulating processes of FCO2 and remaining additional uncertainties
in the FCO2 and chlorophyll-a measurements, these results should be interpreted as illustrative rather
than definitive. Substantial efforts are needed to better characterize the lake ecosystem, investigate and
model the complex processes of FCO2, and explore the mechanistic connections between algal biomass
and FCO2 at multiple spatial and temporal scales.
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