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Abstract

The eddy covariance technique provides measurements of net ecosystem exchange (NEE) of CO2 between the atmosphere and terrestrial
ecosystems, which is widely used to estimate ecosystem respiration and gross primary production (GPP) at a number of CO2 eddy flux tower sites.
In this paper, canopy-level maximum light use efficiency, a key parameter in the satellite-based Vegetation Photosynthesis Model (VPM), was
estimated by using the observed CO2 flux data and photosynthetically active radiation (PAR) data from eddy flux tower sites in an alpine swamp
ecosystem, an alpine shrub ecosystem and an alpine meadow ecosystem in Qinghai–Tibetan Plateau, China. The VPM model uses two improved
vegetation indices (Enhanced Vegetation Index (EVI), Land Surface Water Index (LSWI)) derived from the Moderate Resolution Imaging Spectral
radiometer (MODIS) data and climate data at the flux tower sites, and estimated the seasonal dynamics of GPP of the three alpine grassland
ecosystems in Qinghai–Tibetan Plateau. The seasonal dynamics of GPP predicted by the VPM model agreed well with estimated GPP from eddy
flux towers. These results demonstrated the potential of the satellite-driven VPM model for scaling-up GPP of alpine grassland ecosystems, a key
component for the study of the carbon cycle at regional and global scales.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Eddy covariance technique is one of the best micrometeor-
ological methods for estimating the CO2, water, and energy
exchange between the atmosphere and terrestrial ecosystems. In
recent years, many studies have used eddy covariance techniques
to measure net ecosystem exchange of CO2 (NEE), and the
resultant NEE data provide valuable information related to
photosynthesis period and gross primary production (GPP) of
ecosystems (Falge, Baldocchi, et al., 2002a; Falge, Tenhunen
et al., 2002b). However, flux tower sites only provide integrated
CO2 flux measurements over footprints with sizes and shapes
(linear dimensions typically ranging from hundreds of meters to
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1 km) that vary with the tower height, canopy physical
characteristics and wind velocity (Osmond et al., 2004). Because
of the large spatial heterogeneity and temporal dynamics of
ecosystems across complex landscapes and regions, it is a chal-
lenging task to scale up those CO2 flux measurements from site
level to regional or global scale (Yu et al., 2005). Satellite remote
sensing can provide consistent and systematic observations of
vegetation and ecosystems, and has played an increasing role in
characterization of vegetation structure and estimation of gross
primary production (GPP) or net primary production (NPP)
(Behrenfeld et al., 2001; Field et al., 1998; Ruimy et al., 1999;
Running et al., 2000). Many studies aim to integrate flux tower
data and remote sensing for regional carbon budget research
(Aalto et al., 2004; Oechel et al., 2000; Turner et al., 2003).

Satellite remote sensing can be used to estimate either GPP or
NPP, but is not capable of validatingmodel-generated surfaces for
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Table 1
Location and characteristics of the three flux tower sites in Qinghai–Tibetan
Plateau, China⁎

Site Longitude
(°E)

Latitude
(°N)

Elevation
(m)

Ecosystem
type

Canopy
height
(m)

LAI EC
height
(m)

BT 101.3050 37.6135 3148 Meadow 0.2 3.4 2.2~2.5
SD 101.3271 37.6088 3160 Swamp 0.4 3.5 2.2
GCT 101.3312 37.6654 3293 Shrub 0.5 2.8 2.2

⁎ EC is Eddy covariance system, BT is alpine meadow ecosystem, SD is alpine
swamp site, and GCT is alpine shrub site.
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heterotrophic respiration and hence NEE (Running et al., 1999).
On the other hand, although the eddy covariance techniques can
directly measure NEE, and provide the best approach to calculate
GPP of ecosystems, it still has a large uncertainty to estimate NPP
because it is difficult to partition respiration of ecosystems into
autotrophic respiration and heterotrophic respiration. GPP
estimation is a juncture of integrating tower flux and remote
sensing for the studies of regional vegetation productivity and
carbon cycle. Recently, Xiao, Hollinger, et al. (2004a, Xiao,
Zhang, et al., 2004b, Xiao, Zhang, Hollinger et al., 2005a, Xiao,
Zhang, Saleska et al., 2005b) have developed the satellite-based
Vegetation Photosynthesis Model (VPM) that estimates GPP of
ecosystems, and they have successfully demonstrated the
potential of the model for scaling-up GPP of forests at the CO2

flux tower sites (temperate deciduous broadleaf forest, evergreen
coniferous forest, and seasonally moist tropical forest). However,
the VPM model has not been evaluated and applied in alpine
grassland ecosystems. Validation of a new global model is a
daunting task, as an ideal testing would be conducted across a full
range of biome types and climate. In this study, our objective is
twofold: (1) to examine biophysical performance of vegetation
indices in relation to seasonal dynamics of CO2 fluxes, and (2) to
further evaluate the dependability of the VPM model for
estimating GPP of alpine grassland ecosystems. The improved
vegetation indices are derived from image data of Moderate
Resolution Imaging Spectral radiometer (MODIS), onboard the
NASATerra satellite, collected in 2004. This studywill help better
understand the seasonal dynamics of CO2 fluxes in the vast
Qinghai–Tibetan Plateau (∼2.5 million km2), the roof-of-the-
world,where natural vegetation is dominated by high-altitude arid
and cold steppe and is sensitive to changes in climate and land use
(e.g., livestock grazing). It will also explore the potential of
satellite remote sensing for studying and monitoring vegetation
and carbon fluxes in the Tibetan Plateau.

2. Materials and methods

2.1. Brief description of the study sites

The CO2 eddy flux tower sites are located at the Haibei
Alpine Meadow Ecosystem Research Station in Qinghai
province, northwestern China. The Haibei station lies in a
large valley surrounded by the Qilian Mountain at latitude
37°5′–37°9′N, and longitude 101°2′–101°4′E. The terrain is
characterized as large-area flat plains with small hills, with
elevation ranging from 3100–3400 m. It has a plateau
continental climate, dominated by the southeast monsoon in
summer and high pressure from Siberia in winter. The annual
global solar radiation was up to 6000–7000 MJ/m2. The annual
mean air temperature was −1.7 °C, with a range from 27.6 °C to
−37.1 °C. Annual precipitation ranges from 426 mm to 860 mm
with a mean of 600 mm, mostly occurring from May to
September (Zhao & Zhou, 1999). The study area is dominated
by three major soil types: mat cryic cambisols (alpine meadow
soil), mollic cryic cambisols (alpine shrub soil), and orthic
spodosols (bog soil). Alpine meadow on the sunny slope of
mountain and plain area is largely composed of Kobresia
humilis, Festuca ovina, and Elymus nulan. Alpine shrub
meadow on mountain shadow slopes is dominated by Poten-
tilla fruticos, and its ground layer is large covered by K. humilis,
F. ovina, and E. nulan. The alpine marsh vegetation (swamp),
distributed in surface depressions, is dominated by Kobresia
tibetica and Podicularis longiflora. The Haibei station was first
established for ecological study in 1976, and has been part of
the Chinese Ecosystem Research Network (CERN) since 1989.
Numerous data of climate, soils, vegetation, animals, and
livestock grazing have been accumulated over these years in the
study area.

In an effort to better understand the carbon fluxes and budget
of the Qinghai–Tibetan Plateau, eddy covariance flux towers
were established to measure CO2 and H2O fluxes in the three
ecosystems of the Haibei station, namely the meadow site, the
swamp site, and the shrub site (Table 1). The three flux sites
belong to the ChinaFLUX and AsiaFlux networks. The footprints
of the flux towers are approximately 400– 450 m, depending on
the height of eddy covariance system (Li et al., 2006). The half-
hourly flux data are recorded at the swamp ecosystem and alpine
shrub ecosystem sites, and the quarter-hourly flux data are
recorded at the alpine meadow ecosystem site. The half-hourly or
quarter-hourly CO2 flux data in 2004 were used in this study.

2.2. Partitioning of NEE into gross primary production and
ecosystem respiration

Daily flux data of NEE, GPP and ecosystem respiration (R)
at three alpine ecosystems in 2004 were generated from the half-
hourly flux data (swamp ecosystem and alpine shrub ecosystem
sites) and quarter-hourly flux data (alpine meadow ecosystem
site) (Fig. 1). Data quality control is implemented to reduce
uncertainty. According to measurement theory of the eddy
covariance technique, the half-hourly or quarter-hourly flux
data were first transformed by three-dimension coordinate
rotation and the WPL correction (Li et al., 2005). Then, flux
values were excluded from further analysis if sensor variance
was excessive, rain or snow was falling, for incomplete sample
periods, or instrument malfunction. At night, the quality of flux
data is often not good because of weak turbulent mixing, but the
uncertainty of nighttime data could be lowered or reduced under
high friction velocity (u⁎), which provides intensive turbulent
mixing, so flux values were excluding from further analysis if
u⁎ was below a threshold of 0.20 m/s. After the process of
data quality control, the data coverage in a year was 70% for



Fig. 1. The relationship between daytime net ecosystem exchange (NEE) of CO2 and photosynthetically active radiation (PAR) in 2004 at three alpine ecosystems in
Qinghai–Tibetan Plateau, China. a — swamp ecosystem, b — alpine shrub ecosystem, c — alpine meadow ecosystem.
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swamp ecosystem site and 73% for alpine shrub ecosystem site,
and data coverage of alpine meadow ecosystem site was 72%
from April to December in 2004. To obtain annual estimates of
CO2 exchange, values missing from the half-hourly and quarter-
hourly records of NEE were modeled by combining estimates of
canopy photosynthesis and nocturnal respiration. Daytime CO2

exchange rates were obtained from Michaelis–Menten models
of PPFD, with coefficients fitted on a monthly basis. Missing
nocturnal CO2 exchange values were estimated from Van't Hoff
function (see Eq. (1)) between air temperature and nocturnal
ecosystem respiration.

NEEnight ¼ Rref ;10 � QðT−10Þ=10
10 ð1Þ

where NEEnight is nocturnal ecosystem respiration, Rref,10 is
ecosystem respiration on 10 °C reference temperature, Q10 is
the change in the rate of respiration with a 10 °C change of
temperature, T is air temperature near the ground.

Gap-filled half-hourly (swamp and alpine shrub sites) and
quarter-hourly (alpine meadow site) NEE data were used to
estimate ecosystem respiration and GPP in the following way.
All data records with solar altitude less than 0 were used to
estimate dark (nighttime) respiration rate. For one year, after
data quality control, all observed “dark” NEE values were
regressed against measured air temperature near the ground by
using the Eq. (1). The relationships between nocturnal
ecosystem respiration and air temperature in three alpine
ecosystems are shown in Fig. 2 and Table 2. The resultant
regression equation was then used with measured air temper-
ature near the ground to predict ecosystem respiration during
“light” (daytime) periods (solar altitude N0). GPP was then
Fig. 2. Relationships between nocturnal ecosystem respiration (R) and air temperature
China. a — swamp ecosystem, b — alpine shrub ecosystem, c — alpine meadow e
estimated as NEE minus estimated ecosystem respiration for all
“light” periods (using convention of opposite signs for GPP and
respiration). We calculated 8-day sums of GPP and NEE from
the daily GPP and NEE data, to be temporally consistent with
the 8-day composite MODIS satellite images (Fig. 3, Section
2.3). We only estimated GPP of the alpine meadow ecosystem
from May to October in 2004, i.e., the plant growing season.

2.3. Description of the satellite-based Vegetation Photosynthesis
Model (VPM)

Based on the conceptual partitioning of chlorophyll and non-
photosynthetically active vegetation (NPV) within a canopy,
Xiao et al. (2004a) developed the Vegetation Photosynthesis
Model (VPM) for estimation of GPP over the photosyntheti-
cally active period of vegetation. The functions used were:

GPP ¼ eg � FPARchl � PAR ð2Þ
where FPARchl is the fraction of photosynthetically active
radiation (PAR) absorbed by leaf chlorophyll in the canopy,
PAR is the photosynetically active radiation (μmol photosyn-
thetic photon flux density, PPFD), and εg is the light use
efficiency (μmol CO2/μmol PPFD). Light use efficiency (εg) is
affected by temperature, water, and leaf phenology:

eg ¼ e0 � Tscalar �Wscalar � Pscalar ð3Þ
where ε0 is the apparent quantum yield or maximum light use
efficiency (μmol CO2/μmol PPFD), and Tscalar, Wscalar and
Pscalar are the scalars for the effects of temperature, water and
leaf phenology on light use efficiency of vegetation, respectively.
near the ground in 2004 at three alpine ecosystems in Qinghai–Tibetan Plateau,
cosystem.



Table 2
Parameters of Michaelis–Menten and Van't Hoff equation in three alpine ecosystems⁎

Ecosystem
type

Parameters of Michaelis–Menten Parameters of Van't Hoff

n a GEEmax R2 F-test n Q10 Rref, 10 R2 F-test

Swamp 1312 0.0014 0.6007 0.602 pb0.001 973 1.905 0.1017 0.4332 pb0.001
Shrub 1365 0.0015 0.7678 0.768 pb0.001 1424 2.804 0.1388 0.4842 pb0.001
Meadow 2943 0.0016 1.0366 0.709 pb0.001 1921 2.429 0.1666 0.4014 pb0.001

⁎ a is maximum light use efficiency, GEEmax is maximum gross ecosystem exchange, Rref,10 is ecosystem respiration on 10 °C reference temperature, Q10 is the
change in the rate of respiration with a 10 °C change of temperature.
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The full description of the VPM model is given elsewhere (Xiao,
Hollinger, et al., 2004a; Xiao, Zhang et al., 2005a).

2.3.1. Vegetation indices used as input data of the VPM model
The satellite-based VPM model uses two vegetation indices

as input data: Enhanced Vegetation index (EVI) and Land
Surface Water Index (LSWI). The EVI and LSWI are two
vegetation indices that differ from widely-used normalized
difference vegetation index (NDVI). NDVI was often applied in
production efficiency models to estimate vegetation productiv-
ity of terrestrial ecosystems (Field et al., 1995; Prince &
Goward, 1995; Nemani et al., 2003).

NDVI ¼ ðqnir−qredÞ=ðqnir þ qredÞ ð4Þ
It is known that NDVI suffers several limitations, including

sensitivity to atmospheric conditions, sensitivity to soil
background (e.g., soil moisture), and saturation of NDVI values
in multi-layered and closed canopies (Xiao et al., 2004a). With a
new generation of advanced optical sensors (e.g., VGT and
MODIS) coming into operation, EVI and LSWI have now been
used widely to characterize the growing conditions of
vegetation (Boles et al., 2004; Zhang et al., 2003).

EVI directly adjusts the reflectance in the red band as a
function of the reflectance in the blue band (ρblue), accounting
for residual atmospheric contamination (e.g., aerosols), variable
soil and canopy background reflectance (Huete et al., 1997):

EVI ¼ G� ðqnir−qredÞ=ðqnir þ ðC1 � qred−C2 � qblueÞ þ LÞ
ð5Þ

where G=2.5, C1=6, C2=7.5, and L=1, ρnir, ρred and ρblue is
reflectance of blue, red and near infrared bands.
Fig. 3. The seasonal dynamics of net ecosystem exchange of CO2 (NEE), and gross p
Plateau, China. a — swamp ecosystem, b — alpine shrub ecosystem, c — alpine m
As the short infrared (SWIR) spectral band is sensitive to
vegetation water content and soil moisture, a combination of NIR
and SWIR bands have been used to derive water sensitive
vegetation indices (Ceccato, Flasse et al., 2001, 2002; Ceccato,
Gobron, et al., 2002a; Xiao et al., 2004a). LSWI is calculated as
the normalized difference between NIR and SWIR spectral bands
(Xiao et al., 2002):

LSWI ¼ ðqnir−qswirÞ=ðqnir þ qswirÞ ð6Þ

where ρnir and ρswir is reflectance of near infrared bands and short
infrared bands.

The MODIS sensor onboard the NASA Terra satellite has
36 spectral bands. Seven spectral bands are primarily designed
for the study of vegetation and land surface: blue (459–
479 nm), green (545–565 nm), red (620–670 nm), near
infrared (841–875 nm, 1230–1250 nm) and shortwave
infrared (1628–1652 nm, 2105–2155 nm). In this study we
downloaded the 8-day Land Surface Reflectance (MOD09A1)
data sets from the EROS Data Center, US Geological Survey
(http://www.edc.usgs.gov/). Reflectance values of these four
spectral bands (blue, red, near infrared (841–875 nm),
shortwave infrared (1628–1652 nm)) in 2004 were used to
calculate vegetation indices (NDVI, EVI and LSWI). The
extent of flux towers footprints (400–450 m) was approxi-
mately equal to the size of one MODIS pixel, and the field
survey and Landsat image analysis show that the land surface
surrounding the flux towers is characterized as homogeneous
surface. An earlier study discussed the reliability of using one
MODIS pixel, 3×3 MODIS pixels and 5×5 MODIS pixels for
analysis of vegetation indices and simulation of the VPM
model at a forest eddy flux tower site (Xiao et al., 2005a). In
rimary production (GPP) in 2004 at three alpine ecosystems in Qinghai–Tibetan
eadow ecosystem.

http://www.edc.usgs.gov/


Fig. 4. The seasonal dynamics of PAR and mean air temperature (T) during 2004 at three alpine ecosystems in Qinghai–Tibetan Plateau, China. a — swamp
ecosystem, b — alpine shrub ecosystem, c — alpine meadow ecosystem.
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this study, the times series data of site-specific vegetation
indices in 2004 were extracted from one MODIS pixel that is
centered on the flux tower, based on the geo-location
information (latitude and longitude) of the flux tower sites.

2.3.2. Estimating canopy-level maximum light use efficiency
(ε0) parameter

In the VPM model, the ecosystem-level ε0 values vary with
vegetation type. Information about ε0 for individual vegetation
types can be obtained from analysis of net ecosystem exchange
(NEE) of CO2 and incident PAR (μmol/m2/s photosynthetic
photon flux density) at CO2 eddy flux tower sites (Goulden et
al., 1997). In order to obtain the ε0 values of alpine meadow,
swamp and alpine shrub, we had estimated the nonlinear model
between NEE and PAR by using the Michaelis–Menten
function (Eq. (7)), based on the data within the peak period of
vegetation growing season (from July to August) in 2004. The
fit curves and regression parameters of the Michaelis–Menten
function were shown in Fig. 1 and Table 2.

NEE ¼ a� PPFD � GEEmax

a� PPFD þ GEEmax
−R ð7Þ

where α is maximum light use efficiency or apparent quantum
yield (as PPFD approaches to 0), PPFD is photosynthetic
photon flux density, GEEmax is maximum gross ecosystem
exchange, R is ecosystem respiration. The estimated α value is
used as an estimate of the ε0 parameter in the VPM model.
2.3.3. Estimating parameters for temperature, water and
phenological down-regulation scalars

Detailed descriptions of the functions of calculating Tscalar,
Wscalar and Pscalar (see Eq. (3)) are presented in earlier
publications (Xiao et al., 2004a). In calculation of Tscalar (see
Xiao et al., 2004a), Tmin, Topt and Tmax values vary among
different vegetation types. For the three alpine ecosystems in
this study, we use 0, 20 and 35 °C for Tmin, Topt and Tmax,
respectively, based on the relationship between temperature and
photosynthesis, and the analysis of VPM model testing.
Photosynthesis of alpine ecosystems is often limited by low
temperature. To better capture the effect of air temperature on
photosynthesis, in the calculation of Tscalar, we used the average
daytime temperature during light periods (solar altitude N0),
instead of using the daily mean air temperature that is calculated
as the average value between daily maximum temperature
(generally daytime) and daily minimum temperature (night time).

Estimation of site-specific LSWImax is dependent upon the
time series of remote sensing data. The maximum LSWI value
within the plant-growing season was selected as an estimate of
LSWImax (Xiao, Hollinger et al., 2004a; Xiao, Zhang et al.,
2004b; Xiao, Zhang, Hollinger et al., 2005a; Xiao, Zhang,
Saleska et al., 2005b). Based on the analysis of LSWI seasonal
dynamics derived from MODIS image data from 2003 to 2004,
we used 0.30 for LSWImax of swamp ecosystem and alpine
shrub ecosystem, and used 0.32 for LSWImax of alpine meadow
ecosystem. As a grassland canopy has new leaves emerging
throughout much of the plant growing season, Pscalar is set to
1.0 in this study.

3. Results

3.1. Seasonal dynamics of NEE and GPP in 2004

Fig. 3 shows that the NEE and GPP time series in 2004 at the
three alpine ecosystems had distinct seasonal cycles. The
seasonal dynamics of GPP can be explained in part by the
seasonal dynamics of air temperature and PAR (Fig. 4). In
winter season (day of year—DOY—ranging from 1 to 120 and
from 300 to 365), because low air temperature and frozen soils
inhibit photosynthetic activities of the alpine ecosystems, GPP
values were near zero and NEE were mostly dominated by
ecosystem respiration. From DOY 120 of 2004 as PAR
intensified and air temperature went over the limit of minimum
temperature of photosynthetic activities, the vegetation began to
grow and ecosystem photosynthesis capability gradually
increased, GPP also began to increase and reached its peak
during DOY 180–240. Later on GPP declined gradually as
temperature declined and vegetation started to wither. Photo-
synthetic capability of the three alpine ecosystems differed in
2004. The alpine meadow had the highest photosynthetic
capability, as its peak and total value of GPP during the growing
season (from May to October) was 67.7 g C/m2·8 days and



Fig. 5. The seasonal dynamics of EVI, LSWI and NDVI in 2004 at three alpine ecosystems in Qinghai–Tibetan Plateau, China. a — swamp ecosystem, b — alpine
shrub ecosystem, c — alpine meadow ecosystem.
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733.0 g C/m2, respectively. The peak and total value of GPP
during the plant growing season were approximately 46.8 g C/
m2, and 496.5 g C/m2 at the alpine shrub. The photosynthesis
capability of the swamp was the smallest, with a peak GPP
value of 44.8 g C/m2, and a total GPP value of 465.5 g C/m2 in
the plant growing season, respectively.

3.2. Seasonal dynamics of site-specific vegetation indices

Fig. 5 shows that EVI, NDVI and LSWI of the three alpine
ecosystems had strong seasonal dynamics. The vegetation
indices derived from MODIS data captured the beginning and
ending of the plant growing season well in 2004. The EVI and
NDVI began an abrupt increase on DOY 120 and reached their
Fig. 6. Comparison between vegetation indices (EVI, NDVI) and gross primary produ
shrub ecosystem, c— alpine meadow ecosystem. d— Simple linear regression analy
combined. Solid line is regression analysis between GPP and EVI (GPP=90.20EVI−
(GPP=58.53NDVI−9.88, R2=0.73).
peak value during DOY 201–249, then they started to decline
gradually and remained low after DOY 300. In the winter
months (December, January and February), LSWI values were
high, which was attributed to snow cover (Fig. 5). As snow
melted in the spring (March and April), LSWI declined
gradually. The LSWI time series data had a seasonal cycle
with a spring trough and a fall trough, which can be easily
recognized from analysis of LSWI time series data.

3.3. Temporal correlation between vegetation indices and GPP

The seasonal dynamics of GPP were well-correlated with
that of the vegetation indices (NDVI and EVI, Fig. 6). During
winter periods (DOY 1–120 and 300–365), the two vegetation
ction (see Fig. 3) at the three flux tower sites, a— swamp ecosystem, b— alpine
ses between GPP and vegetation indices (NDVI, EVI), with data for all three sites
8.59, R2=0.85), and dashed line is regression analysis between GPP and NDVI



Fig. 7. Comparison of the seasonal dynamics between the observed gross primary production (GPP) and predicted GPP in 2004 at three eddy flux tower sites.
a— swamp ecosystem, b— alpine shrub ecosystem, c— alpine meadow ecosystem. d— Simple linear regression analysis between the observed GPP and predicted
GPP, with data for all three sites combined.

Table 3
Comparison between the observed GPP and predicted GPP in three alpine
ecosystems (g C/m2)⁎

Ecosystem
type

Flux tower data VPM model

GPPobs(5–10) GPPobs(1–12) GPPpre(5–10) GPPpre(1–12)

Swamp 465.5 508.6 459.0 476.9
(RE=1.4%) (RE=6.2%)

Alpine shrub 496.5 528.8 473.4 485.7
(RE=4.7%) (RE=8.2%)

Alpine
meadow

733.0 789.2 678.8 696.1
(From Apr
to Dec)

(RE=7.4%) (From Apr
to Dec)

⁎GPPobs (1–12) andGPPpre (1–12) are the observed and predicted annual GPP from
January to December, respectively. GPPobs (5–10) and GPPpre (5–10) are seasonally
integrated sums of the observedGPP and predicted GPP over the period ofMay 1
to October 31, respectively. RE=[(GPPobs−GPPpre) /GPPobs]×100%.
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indices were at low levels and GPP values were near zero
because of no vegetation photosynthesis in winter. From DOY
120 the two vegetation indices and GPP of ecosystems
gradually increased as vegetations grew and reached their
peaks during DOY 180–240. However, the seasonal dynamics
of EVI differs from that of NDVI in terms of both magnitude
and phase. During the plant growing season, the maximum
NDVI value ranges in the order of 0.75–0.85, and were much
higher than the maximum EVI values (in the order of 0.5–0.6).
Although the dynamic variations of EVI and NDVI both lagged
behind those of GPP during vegetation grow peaks, EVI
followed GPP better than NDVI, especially in alpine shrub
ecosystem (Fig. 6b). When using all the observations of the
three alpine ecosystems in 2004, EVI has a stronger linear
relationship with GPP than NDVI does (Fig. 6d). This result
was consistent with the previous studies (Xiao, Hollinger et al.,
2004a; Xiao, Zhang et al., 2004b).

3.4. Simulations of the VPM model

The VPM model was run at 8-day time scale using the site-
specific data of temperature, PAR and vegetation indices in
2004. The seasonal dynamics of predicted GPP (GPPpre) from
the VPM model was compared with the observed GPP (GPPobs)
data (Fig. 7). There exist discrepancies between GPPobs and
GPPpre in a few 8-day periods; for instance, many GPPpre values
are lower than GPPobs values, especially in alpine meadow
ecosystem and alpine shrub ecosystem. Occasionally, GPPpre
values are higher than GPPobs at the peak of the growing season.
Generally, the predicted GPP by the VPM model agreed well
with estimated GPP from the flux towers data in the three alpine
ecosystems. The seasonal dynamics of GPPpre matched
reasonably well with those of GPPobs, and the simple linear
regression model also shows a good agreement between GPPpre
and GPPobs (Fig. 7d). Seasonally integrated GPPpre over the
period of May to October (plant-growing season) was only
slightly lower than seasonally integrated GPPobs, ranging from
1.4% to 7.4%, and the annual GPPpre was lower than annual
GPPobs, 6.2% in swamp ecosystem and 8.2% in alpine shrub
ecosystem (Table 3).
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4. Discussion and summary

As the leaf phenological cycle (leaf flush, expansion,
senescence, fall) progresses, canopy leaves change in their
biophysical, biochemical (e.g., chlorophyll and other pigments,
nitrogen) and optical properties, which in turn influence both
biophysical parameters (e.g., albedo, latent and sensible heat
flux) and biogeochemical parameters (e.g., photosynthesis) of
the land surface (Xiao et al., 2004b). Limited studies had
evaluated radiometric and biophysical performance of vegeta-
tion indices (EVI, NDVI) fromMODIS data (Huete et al., 2002).
In this study, we evaluated the biophysical performance of
vegetation indices (NDVI and EVI) in relation to GPP of three
alpine ecosystems in Qinghai–Tibetan Plateau, China. The
quantitative relationships between the vegetation indices and
CO2 flux data clearly demonstrated the improvement of EVI
over NDVI, in terms of the phase and magnitude of
photosynthesis. And the time series of EVI and LSWI provided
valuable insight into the processes (e.g., growing season length
and water condition) that regulate ecosystem carbon exchange.
These sensor-specific advanced vegetation indices (e.g. EVI and
LSWI) have been optimized for the Moderate Resolution
Imaging Spectroradiometer (MODIS), the Global Imager
(GLI) and the VEGETATION sensors. Clearly, there is a need
to examine those advanced vegetation indices in relation to leaf
phenology and the seasonal dynamics of GPP across the flux
tower sites in various biomes.

The simulation results of the VPM model have shown that
predicted GPP agreedwell with observedGPP of the three alpine
ecosystems in Qinghai–Tibetan Plateau. The results from this
study and earlier VPM studies of forest (Xiao, Hollinger et al.,
2004a; Xiao, Zhang et al., 2004b, 2005b) indirectly support the
Chlorophyll–FPARchl–EVI hypotheses and leaf water-LSWI
hypothesis implemented in the VPM model. The VPM model is
an alternative, complementary to other production efficiency
models that are based on the LAI–FPARcanopy–NDVI paradigm.
Recently, the standard MODIS-based GPP estimates (8-day
composite) from the MODIS-PSN algorithm (Running et al.,
2000) which built upon the LAI–FPARcanopy–NDVI relation-
ships become available to the public, and the BigFoot project has
evaluated MODIS standard GPP and NPP products (MOD17),
relying on running the Biome-BGC model (Turner et al., 2005).
The study results of Turner et al. (2005) indicated that the GPP
predicted by the PSN did not match well with tower-based GPP
with regard to the beginning and end of the growing season at the
desert grassland site (SEVI). Moreover, the phase of MODIS-
based GPP significantly deviated from that of tower-based GPP
in the period of from about DOY 60 to DOY 200. Combining
information on the phenomenology of relationships of grassland
GPP with photosynthetically active radiation, NDVI, and soil
water, Gilmanov et al. (2005) used the empirical model to
estimate GPP of grassland (Mandan site) at 10-day time scale.
According to the simple linear regression analysis between
GPPobs and GPPpre, the simulated GPPpre by the empirical model
accounts for 68% (R2 =0.68) of the variance in GPPobs
(Gilmanov et al., 2005). In this study, the phase and magnitude
of GPP estimated by the VPM model was very consistent with
tower-based GPP (R2 =0.94, see Fig. 7d). Further comparison
between the VPM model and other GPP models across various
CO2 eddy flux tower sites is needed in the future.

Among simulation results of the VPM model, there still exist
differences between GPPpred and GPPobs for a few 8-day periods
(Fig. 7), accounting for most of the differences between
seasonally integrated GPPobs and GPPpred (Table 3). Those
discrepancies between GPPobs and GPPpre may be attributed to
three sources of errors. The first source is the sensitivity of the
VPM model to PAR and temperature, for instance, smaller
GPPpre in DOY 113–145 at alpine meadow ecosystem and in
DOY 161–169 at alpine shrub ecosystem, and larger GPPpre in
DOY 161–177 at swamp ecosystem. The second source is the
time-series data of vegetation indices derived from satellite
images. We used the 8-day MODIS composite images that have
no BRDF correction or normalization, and thus, the effect of
angular geometry on surface reflectance and vegetation indices
remained. The third source is the error (overestimation or
underestimation) of the observed GPP (GPPobs). GPPobs is
calculated from flux-measured NEE and estimated daytime
ecosystem respiration. The two major steps that must be taken
to calculate GPP are the gap filling of NEE and estimation of
daytime (solar altitudeN0) ecosystem respiration. Both of these
steps require subjective decisions and are currently the subject
of a great deal of discussion (Falge, Baldocchi, et al., 2002a,
Falge, Tenhunen et al., 2002b). On the other hand, in winter,
there was an illusive phenomenon that flux-measured NEE had
a few negative values, indicating that vegetation was still
photosynthesizing. Actually, there was no green vegetation
present. This phenomenon resulted in annual GPPobs calculated
from flux towers data being larger than GPPpre of the VPM
model in the three ecosystems, especially in swamp ecosystem
and alpine meadow ecosystem.

The light use efficiency (εg) is the basis for the Production
Efficiency Models (PEMs), and the accurate estimating of εg is
one of key steps for using the PEMs to estimate either GPP or
NPP (Running et al., 1999). In natural ecosystems, εg is
determined by many biological and biophysical factors as well
as environmental factors. Much attention should be given to the
variability of εg among vegetation types across a heterogeneous
landscape. If εg differs significantly among vegetation types,
these differences should be accounted for when estimating GPP
with remotely sensed data. The eddy covariance technique
provides a significant potential approach to estimate the
canopy-level εg (Turner et al., 2003), and now over 300 CO2

eddy flux tower sites in the world constitute a global FLUXNET
network (http://www.fluxnet.ornl.gov/fluxnet/index.cfm). In
this study, we used CO2 flux data to estimate the canopy-level
maximum light use efficiency (ε0), which is complementary to
the literature survey approach used in previous VPM studies
(Xiao, Hollinger et al., 2004a; Xiao, Zhang et al., 2004b; Xiao,
Zhang, Hollinger et al., 2005a; Xiao, Zhang, Saleska et al.,
2005b). Although the scatter plots of NEE and PAR showed
some degree of data scattering, owing to the changes in
environmental factors (Fig. 1), the fits for Michaelis–Menten
were statistically significant at the F-test of 0.01 level (Table 2).
As more CO2 flux data of FLUXNET sites become available, a

http://www.fluxnet.ornl.gov/fluxnet/index.cfm
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mega-data analysis of CO2 fluxes will help estimate ε0 across
various vegetation types. Combining vegetation indices (EVI,
LSWI), climate data (PAR, temperature) and maximum light
use efficiency (ε0) parameter for individual vegetation types, the
VPM model is capable for estimating regional or global GPP.
The uncertainty of regional estimation of the VPM model will
be assessed in further studies.

In summary, we have used net CO2 exchange flux data of
three alpine ecosystems in Qinghai–Tibetan Plateau to
estimate parameters of the VPM model and simulated the
seasonal dynamics of GPP of three alpine ecosystems by
integrating climate data and MODIS vegetation indices with
the VPM model. These results indicate that the seasonal
dynamics of GPP predicted by the VPM model matched well
with observed GPP from eddy flux towers. The predicted
annual GPP values agreed reasonably well with observed
annual GPP, with 7.2% mean relative error. Moreover, the
mean relative error of the cumulative GPP was only 4.4%
between the predicted and observed in the plant growth season
(from May to October). And the results have demonstrated that
EVI had a stronger linear relationship with GPP than did
NDVI. This study also highlighted the biophysical perfor-
mance of improved vegetation indices in relation to GPP and
demonstrated the potential of the VPM model for scaling-up of
GPP of alpine grassland ecosystems. Additional studies are
needed to validate the capability of the VPM model in
capturing the interannual GPP variations of alpine grassland
ecosystems, as additional CO2 flux data become available in
the near future.
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