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Error Sources of Flux Data

» Measurement biases (correctable ©)



Major measurement biases

* Tilt of vertical axis in the sonic anemometer coordinate system away from its counterpart in the
natural wind coordinate system.

Coordinate rotation correction ©

* Frequency loss due to the gradual response and line/volume averaging to measured variables.
Frequency correction ©

e Air density fluctuations due to heat and water transfer into/out the measured air flows
WPL correction (Density effect corrections) ©

Webb, Pearman, and Leuning (1980)
* Use of sonic temperature for sensible heat flux

SND correction (Moisture correction of sonic temperature flux for sensible heat flux) ©

Schotanus, Nieuwstadt, Debruin (1983)
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Some Errors in the Measurement of Reynolds Stress
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Sonic anemometer
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CSAT right-handed
coordinate system

Coordinate rotation corrections

Express the measured fluxes including 3D wind velocities 1n a sonic
anemometer coordinate system into the natural wind coordinate system.
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Sonic to natural wind coordinate system \\
(Tanner and Thurtell, 1969)
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Tanner, CB, GW Thurtell. 1969. Anemoclinometer measurements of Reynolds stress and heat transport
in the atmospheric surface layer, US Army Electronics Command, Atmospheric
Sciences Laboratory, TR ECOM 66-G22-F, R1-R10.
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Tst Rotation around z -axis aligns to the mainstream wind
direction at a temporal scale of averaging data.
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2"d Rotation around new y,-axis nullifies
mean vertical wind
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3rd Rotation around new x,-axis to IDEALLY express the measured 3D
wind means to the natural wind coordinate system.

Assuming v w_ =0,

1 VW,
b= 5 arctan| 2 ——2
Vo =W,

Rotation around x,-axis.
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The assumption to derive B is invalid. The 3" rotation is not recommended any more (Finnigan, 2004)

Finnigan, J. J.: 2004, 'A re-evaluation of long-term flux measurement techniques Part II:
Coordinates systems', Boundary-Layer Meteorology. 113, 1-41
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Double coordinate rotations
for mean wind speeds

COSXCOSy cosasiny —sina

U,
v, |=| —smny COS ¥ 0
W, | |sinacosy sinasiny cosa

~
RIS

~
RIS




Double coordinate rotations
for fluctuations in wind speeds




Double coordinate rotations
for momentum covariance terms
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Double coordinate rotations
for covariance of CO, density with momentum variables
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Applicable for CO, mixing ratio (XCOZ) with momentum variables by replacing with Pco, with Xco, -
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Double coordinate rotations
for covariance of H,O density with momentum variables
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Applicable for H,0 mixing ratio (XHZO) with momentum variables by replacing with Pco, with Xco, -
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Planner fit rotations
(Wilczak et al., 2001)

SONIC ANEMOMETER TILT CORRECTION ALGORITHMS

JAMES M: WILCZAK', STEVEN P. ONCLEY? and STEVEN A. STAGE®
I\ National Oceanic and Atmospheric Adminisiration, Environmental Research Laboraiories,
Environmental Technology Laboraiory, Boulder, CO 80303, US.A.; 2 National Center for
Atmospheric Research, Boulder, CO 80303, U.S.A.; * Innovative Emergency Management, Baton
Rouge, L4 70509, U.S.A.

(Received in final form 4 July 2000)

Abstract, The sensitivity of sonic anemometer-derived stress estimates to the tilt of the anemometer
is investigated, The largest stress errors are shown to occur for unstable stratification (z/L = )
and deep convective boundary layers. Three methods for determining the tilt angles relative to a
mean streamline coordinate system and for computing the tilt-corrected stresses are then compared.
The most commoenly used method, involving a double rotation of the anemometers’ axes, is shown
to result in significant run-to-run stress errors due to the sampling uncertainty of the mean vertical
wvelocity. An alternative method, requiring a triple rotation of the anemometer axes, is shown to result
in even greater run-to-run siress errors due to the combined sampling errors of the mean vertical
velocity and the cross-wind stress. For measurements over the sea where the cross-siream siress
is important, the double rotation method is shown to overestimate the surface stress, due to the
uncorrected lateral tilt component. A third method, using a planar fit technique, is shown to reduce
the run-to-run stress ervors due o sampling effects, and provides an unbiased estimate of the lateral
stress.

Keywords: Anemometers, Coordinate systems, Sloping terrain, Surface layer, Tilt corrections.

1. Introduction

The fact that large errors in the measurement of the horizontal momentum flux can
result from relatively small errors in the alignment of turbulent wind sensors has
long been known (Pond, 1968; Deacon, 1968; Kaimal and Haugen, 1969; Dyer
and Hicks, 1972; Dyer, 1981). The source of the large momentum flux errors is the
cross contamination of velocities that occurs in a tilted sensor, such that fluctuations
in the longitudinal components of the wind appear as vertical velocity fluctuations,
and vice versa.

In level terrain the most straightforward solution is to be certain that the turbu-
lent wind sensors are exceedingly close to being in the true horizontal and vertical
planes. Kaimal and Haugen (1969) suggest that in perfectly level terrain the anem-
ometers be leveled to within 0.1 degree. Alternatively, if the magnitude of the tilt
of the sensor is known to a similar 0.1 degree accuracy, the measured velogity
time series (and average stress) can be corrected in a post analysis to the true
horizontal/vertical coordinate system. In either case, a very accurate inclinometer
is required, and the terrain must be level to a small fraction of a degree.

bl Boundary-Laver Meteorology 99: 127-150, 2001.
© 2001 Kivwer Academic Publishers. Printed in the Netherlands.




Planner fit rotations
(Wilczak et al., 2001)

3rd rotation 2" rotation 1%t rotation

(Unnecessary if only for flux)

Wilczak, JM, SP Oncley, SA Stage. 2001. Sonic Anemometer tilt correction algorithm.
Boundary-Layer Meteorol. 99: 127-150.



Rotation angle computations

Computation of rotation angles (a, 6,

and y) need two- to three- week data

Algorithms to compute the rotation

angles are long, which are ignored here.

Coordinate system rotated about this plane



Ist Rotation around y, -axis
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2"d Rotation around new x;-axis.
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Planar fit matrixes
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Planar fit coordinate rotations
for momentum covariance terms
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Planar fit coordinate rotations
for covariance of CO, density with momentum variables
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Applicable for CO, mixing ratio (XCOZ) with momentum variables by replacing with Pco, with Xco, -


Presenter Notes
Presentation Notes
Also applicable to trace gas density or mixing ratio


Planar fit coordinate rotations
for covariance of H,O density with momentum variables
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Applicable for H,0 mixing ratio U(HZO) with momentum variables by replacing with Peo, with Xco, -
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