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Accurate quantification of the spatio-temporal variation of gross primary production (GPP) for terrestrial ecosys-
tems is significant for ecosystemmanagement and the study of the global carbon cycle. In this study, we propose
a MODIS-based Photosynthetic Capacity Model (PCM) to estimate GPP in Northern China and the Tibetan
Plateau. The PCM follows the logic of the light use efficiencymodel and is only driven by the EnhancedVegetation
Index (EVI) and the LandSurfaceWater Index (LSWI).Multi-year eddyCO2fluxdata fromfive vegetation types in
North China (temperate mixed forest, temperate steppe) and the Tibetan Plateau (alpine shrubland, alpine
marsh and alpinemeadow-steppe) were used for model parameterization and validation. In most cases, the sea-
sonal and interannual variation in the simulated GPP agreed well with the observed GPP. Model comparisons
showed that the predictive accuracy of the PCMwas higher than that of the MODIS GPP products and was com-
parable with that of the Vegetation Photosynthesis Model (VPM) and the potential PAR-based GPP models. The
model parameter (PCmax) of the PCM represents the maximum photosynthetic capacity, which showed a good
linear relationship with themean annual nighttime Land Surface Temperature (LSTan). With this linear function,
the PCM-simulated GPP can explain approximately 93% of the variation in the flux-observed GPP across all five
vegetation types. These analyses demonstrated the potential of the PCM as an alternative tool for regional GPP
estimation.

© 2014 Elsevier Inc. All rights reserved.
1. Introduction

Grossprimaryproduction (GPP) is definedas thephotosynthetic rate
at which plants capture and store chemical energy in a given length of
time (Chapin, Matson, & Vitousek, 2011, Chap. 5). GPP is the first step
in the input of atmospheric CO2 to terrestrial ecosystems (vegeta-
tion and the soil) and a key component of the carbon biogeochemical
cycle that links atmospheric CO2 and terrestrial ecosystems (Yuan
et al., 2010). Quantifying GPP at regional and global scales is essential
to the understanding of the carbon cycle of terrestrial ecosystems
(Beer et al., 2010; Gitelson et al., 2006; Yu et al., 2006, 2013).

The eddy covariance (EC) technique instantaneously measures the
net ecosystem exchange of CO2 (NEE) between terrestrial ecosystems
and the atmosphere. Its long-term network observations provide valu-
able information for developing and validating GPP models (Yu et al.,
ciences and Natural Resources
ad, Chaoyang District, Beijing
2006; Yuan et al., 2007). Remote sensing (RS) technology repeatedly
monitors dynamic changes in terrestrial ecosystem structure and func-
tions at a high temporal–spatial resolution. Its continuous observations
play an increasing role in estimating GPP at regional and global scales
(Prince & Goward, 1995; Xiao, Hollinger, et al., 2004). Incorporating
both EC flux data and RS imagery, many satellite-based GPP models
have been developed, e.g., the Vegetation Photosynthesis Model (VPM,
Xiao, Hollinger, et al., 2004), the MODIS GPP algorithm (Running et al.,
2004), the EC–LUE model (Yuan et al., 2007), the Temperature and
Greenness model (TG, Sims et al., 2008), the Vegetation Index model
(VI, Wu, Munger, Niu, & Kuang, 2010) and the Greenness and Radiation
model (GR, Gitelson et al., 2006, 2012; Peng, Gitelson, Keydan, Rundquist,
& Moses, 2011; Peng, Gitelson, & Sakamoto, 2013; Sakamoto, Gitelson,
Wardlow, Verma, & Suyker, 2011; Wu, Chen, & Huang, 2011).

Most satellite-based GPP models have been based on the theory of
light use efficiency proposed by Monteith (1972, 1977), who suggested
that crop productivity is strongly related to the intercepted solar radia-
tion and thus can be estimated as the product of the intercepted solar
radiation and its conversion efficiency into plant photosynthate,
i.e., light use efficiency (LUE). Based on the method used to estimate
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LUE, these satellite-based GPPmodels can be classified into two catego-
ries. The first category includes those models that employ biome-
dependent or biome-independent maximum light use efficiency to
calculate LUE, e.g., VPM, the MODIS GPP algorithm and EC–LUE. The
general formula for models of this type is as follows:

GPP ¼ εmax � f � FPAR � PAR; ð1Þ

where PAR is the incident photosynthetically active radiation
(mol PPFD m−2 s−1 or mol PPFD m−2 d−1), FPAR is the fraction of
PAR absorbed by the plant canopy, the product of FPAR and PAR is the
PAR absorbed by the plant canopy (APAR), εmax is the maximum LUE
without environmental stresses (mol C mol APAR−1) and f is a down-
ward regulating factor for εmax ranging from 0 to 1 under various envi-
ronmental limiting conditions. Thus, the product of εmax and f is the
actual LUE. Factor f is usually a function of temperature (T), soil mois-
ture (SM) and/or water vapor pressure deficit (VPD),

f ¼ f T � f SM � f VPD: ð2Þ

Models of this typemay differ in their approach to estimate εmax and
f in Eq. (1). For example, the VPM obtains biome-specific εmax from
the literature or from the relationship between NEE and incident PAR.
The f of this model includes air temperature (Ta), land surface water
conditions and phenology (Xiao, Hollinger, et al., 2004). The MODIS
GPP algorithm uses biome-specific εmax from biome parameter lookup
tables, and the low temperature and high VPD are chosen to down-
regulate εmax (Running et al., 2004). The EC–LUEmodel sets an invariant
εmax across all biomes, and f equals theminimum value of scalars for the
respective effects of Ta and soil moisture on εmax according to Liebig's
law (Yuan et al., 2007).

The second category of GPP models, such as TG, VI and GR, involves
simplified versions of Eq. (1) based on the relationships between re-
mote sensing data and key factors affecting photosynthesis. Models of
this category differ according to the simplified factors. For example,
because there are good relationships between Land Surface Tempera-
ture (LST) and Ta, VPD and PAR, the TG model is solely driven by
LST and the Enhanced Vegetation Index (EVI) from MODIS imagery
(Sims et al., 2008). Because the vegetation index is a reliable proxy for
both LUE and FPAR, the VI model simply takes the form of GPP ∝ EVI
×EVI × PAR (Wu, Munger, et al., 2010). It has been reported that both
GPP and the vegetation index have close relationships with canopy
chlorophyll content. Thus, the GR model estimates GPP based on the
product of the vegetation index and either incident PAR or potential
PAR (Gitelson et al., 2006, 2012; Peng et al., 2011, 2013; Sakamoto
et al., 2011; Wu et al., 2011).

The first category of GPP models requires ground meteorological
observations as input variables. These observations usually have insuffi-
ciently detailed temporal and spatial resolution and introduce simula-
tion errors into the outputs for large areas (Rahman, Sims, Cordova, &
EI-Masri, 2005; Sims et al., 2006, 2008). The GPP models in the second
category reduce or avoid their dependence on ground meteorological
observations. These features promote their application at regional and
global scales. However, the ecologicalmeaning of themodel parameters
is not nearly as clear as that of the parameters in the first category of GPP
models (Yang, Shang, Guan, & Jiang, 2013). Accordingly, the principal
goal of this paper is to develop an entirely satellite-based GPP model
in which the model parameter has a clear ecological meaning. The
specific objectives are as follows: (1) to apply the flux data from five
vegetation types inNorth China and the Tibetan Plateau to parameterize
and validate the model, (2) to explore the possibility of using remote
sensing data to simulate the spatial variation in the model parameter,
(3) to analyze the seasonal and inter-seasonal dynamics of the simulat-
ed GPP and (4) to compare the predictive accuracy of the PCMwith that
of the MODIS GPP products and the VPM.
2. Model description

2.1. Model structure

According to Monteith's (1972, 1977) logic, incident PAR (inPAR) is
the energy source for photosynthesis and is included as an important
variable in LUE models. Over short time periods (minutes to hours),
photosynthesis increases with the increase in inPAR under light-
limited conditions. When inPAR exceeds what plants need, photosyn-
thesis begins to saturate and then tends to decrease (e.g., Alton, North,
& Los, 2007; Ibrom et al., 2008; Lagergren et al., 2005; Propastin,
Ibrom, Knohl, & Erasmi, 2012; Sims et al., 2005; Turner et al., 2003;
Zhang et al., 2011). In contrast to the results on an hourly time scale,
daily inPAR has a very weak relationship with daily gross photosynthe-
sis within many types of ecosystems, even during the peak growing
season, when inPAR has the strongest direct effect on photosynthesis
(Sims et al., 2005). The daily inPAR in the Arctic is nearly the same as
that in the tropics during midsummer; however, the tropics have a
greater daily carbon gain than the Arctic (Chapin et al., 2011, Chap. 5).
The annual inPAR also has no relationship with annual GPP across bi-
omes from tundra to rainforest (Garbulsky et al., 2010).

It was reported that inPAR can introduce unpredictable uncertainty
in GPP estimation for crops due to variable atmospheric conditions
such as clouds, aerosols and water vapor (Gitelson et al., 2012; Peng
et al., 2013). Potential PAR (pPAR) can be considered as the maximal
value of inPAR that may occur when the concentrations of atmospheric
aerosols and gases are minimal, which excludes the frequent fluctua-
tions in inPAR and has been shown to perform more satisfactorily
than inPAR in GPP estimation for crops (Gitelson et al., 2012; Peng
et al., 2013). The likely reason for this outcome is that the acclimation
and adaptation mechanisms of plants to unfavorable light conditions
can maximize light absorption and minimize light damage by adjusting
their physiological and genetic features (e.g., Chapin et al., 2011, Chap.
5; Ehleringer, Björkman, & Mooney, 1976; Koller, 2000; Taiz & Zeiger,
2002, Chap. 9). The pPAR during the growing season can be expressed
as the product of the maximum pPAR (pPARmax, mol PPFD m−2 d−1)
and a down-regulated factor that varies with the day of a year
(pPARt). If we use pPAR in place of inPAR in Eq. (1), we obtain the fol-
lowing result:

GPP ¼ εmax � pPARmaxð Þ � FPAR � pPARtð Þ � f : ð3Þ

The product of εmax and pPARmax represents the maximum photo-
synthetic capacity (termed PCmax, mol C m−2 d−1), and the product of
FPAR and pPARt is a down-regulated factor that varies with the
absorbed PAR, which can be used to represent the variability of photo-
synthetic capacity under different growth stages (PCt). Photosynthetic
capacity is defined as the photosynthetic rate under favorable environ-
mental conditions (Chapin et al., 2011, Chap. 5). Thus, the LUE model
can be converted into the followingmodel based on the concept of pho-
tosynthetic capacity:

GPP ¼ PCmax � PCt � f : ð4Þ

This equation specifies the general form of our developed GPP
model, termed the Photosynthetic Capacity Model (PCM). Photosyn-
thetic capacity depends on the amount of photosynthetic apparatus
within a plant community and can be directly expressed by the total
content of canopy chlorophyll (Gitelson, Viña, Ciganda, Rundquist, &
Arkebauer, 2005; Medina & Lieth, 1964; Muraoka & Koizumi, 2005;
Peng et al., 2011; Schlemmer et al., 2013; Whittaker & Marks, 1975). A
number of studies have exploredmethods of estimating canopy chloro-
phyll content from vegetation indices. Such estimation has been shown
to be feasible and can provide acceptable accuracy (Gitelson et al., 2005;
Hunt et al., 2013). EVI has been reported to show close correlationswith
chlorophyll content at both the leaf and the canopy levels (Huang et al.,



Table 1
Brief description of the five vegetation types.

Vegetation type Site name Code Latitude Longitude Mean annual
temperature (°C)

Mean annual
precipitation (mm)

Data available
period

Reference

Broad-leaved Korean pine mixed forest Changbaishan CBS 42.40 128.10 0.9–4.0 600–810 2003–2008 Zhang et al. (2009)
Temperate steppe Inner Mongolia NM 43.55 116.68 −0.4 350.9 2004–2008 Wu et al. (2008)
Alpine shrubland Haibei HBGC 37.67 101.33 −1.7 600 2004–2011 Li et al. (2007)
Alpine marsh Haibei HBSD 37.61 101.31 −1.7 600 2004–2008 Li et al. (2007)
Alpine meadow-steppe Damxung DX 30.85 91.08 1.3 480 2004–2009 Fu et al. (2009)
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2012; Ide, Nakaji, & Oguma, 2010; Muraoka et al., 2013; Nagai, Saigusa,
Muraoka, & Nasahara, 2010; Wu, Munger, et al., 2010). Biophysical re-
search has also indicated that EVI is sensitive to canopy variations and
is barely saturated in multi-layered and closed canopies (Huete et al.,
2002; Xiao, Hollinger, et al., 2004). Because EVI is readily obtained at
high temporal and spatial resolution from satellite imagery, it is used
to represent the variability of photosynthetic capacity in this version
of the PCM.

Under actual environmental conditions, photosynthesis is limited by
environmental stress. It has been reported that moisture is a key factor
controlling plant photosynthesis, e.g., in semidesert grassland in south-
eastern Arizona, USA (Scott, Hamerlynck, Jenerette, Moran, & Barron-
Gafford, 2010) and in savanna in Africa (Sjöström et al., 2011). Research
at 28 AmeriFlux and EuroFlux sites, including five major terrestrial
biomes (deciduous broadleaf forest, mixed forest, evergreen needleleaf
forest, grassland and savanna), has indicated that moisture conditions
control photosynthesis at most sites except at the beginning and end
of the growing season when temperature controls photosynthesis
in certain ecosystems (Yuan et al., 2007). Phenological studies have
indicated that the accumulated temperature above a certain thresh-
old agrees well with the timing of bud burst in boreal ecosystems
(Linkosalo, 2000); in temperate Eastern China, the spatial patterns of
themean spring and autumn air temperatures were significantly corre-
lated with those of the beginning and ending dates of the growing sea-
son, respectively (Chen, Hu, & Yu, 2005). This relationship between
temperature and photosynthesis at the beginning and end of the grow-
ing season can also be represented appropriately by an EVI time series
(Zhang et al., 2003).

Soil moisture is the source of water for plant growth, and VPD indi-
cates the evaporative demand in the atmosphere. Plant photosynthesis
depends primarily on the dynamics of both soilmoisture andVPD (Xiao,
Hollinger, et al., 2004). A number of light use efficiency models use soil
moisture and/or VPD tomirror the effect ofmoisture conditions on pho-
tosynthesis (Potter et al., 1993; Prince & Goward, 1995; Running et al.,
Fig. 1. The relationship between the observed GPP and EVIs ×Ws, based on an 8-day average.W
shrubland (HBGC), D: alpine marsh (HBSD), and E: alpine meadow-steppe (DX).
2004). However, it is difficult to quantify soil moisture across large
areas based on either remote sensing or modeling, and this difficulty
limits the spatial application of soil-moisture dependent models (Yuan
et al., 2007). The VPM developed a moisture index (Wscalar) as an alter-
native to represent the dynamic change of canopy water content (Xiao,
Hollinger, et al., 2004).Wscalar has been successfully applied in GPP esti-
mation in many ecosystems, e.g., evergreen needleleaf forest (Xiao,
Hollinger, et al., 2004), deciduous broadleaf forest (Xiao, Zhang, et al.,
2004), tropical evergreen forest (Xiao et al., 2005), cropland (Kalfas,
Xiao, Vanegas, Verma, & Suyker, 2011; Yan et al., 2009), grassland
(Wu et al., 2008), shrubland (Li et al., 2007) and wetland (Li et al.,
2007). Because Wscalar can also be calculated from easily obtained re-
mote sensing data, it is used to represent the seasonal variation of can-
opy water content in this version of the PCM.

2.2. Model algorithms

From the above specifications, the PCM can be expressed as follows:

GPP ¼ PCmax � EVIs �Ws; ð5Þ

where PCmax stands for themaximumphotosynthetic capacity for a cer-
tain region (e.g., mol Cm−2 d−1), EVIs represents the variability of pho-
tosynthetic capacity and Ws indicates the moisture conditions that
downward regulate photosynthetic capacity. The values of EVIs and
Ws are set to zero before and after the growing season, when photosyn-
thesis does not occur. The beginning and end of the growing season are
identified from the EVI time series (Zhang et al., 2003).

Because GPP is almost 0 when EVI is approximately 0.1 (Sims et al.,
2006), the equation developed for the TG model is used as follows to
represent the variability of photosynthetic capacity (Sims et al., 2008):

EVIs ¼ EVI−0:1: ð6Þ
s: moisture index. A: temperate mixed forest (CBS), B: temperate steppe (NM), C: alpine



Table 3
The coefficients of determination between themaximumphotosynthetic capacity (PCmax)
and environmental factors (MAT:mean annual daily air temperature,MATn:mean annual
nighttime air temperature, MATd: mean annual daytime air temperature, andMAP: mean
annual precipitation).

MAT MATn MATd MAP

r2 0.83 0.84 0.74 0.13
p 0.03 0.03 0.06 0.56
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The EVI is computed from the following equation (Huete et al.,
2002):

EVI ¼ G� ρnir−ρred

ρnir þ C1 � ρred−C2 � ρblueð Þ þ L
; ð7Þ

where G= 2.5, C1 = 6.0, C2 = 7.5, L= 1 and ρnir, ρred and ρblue are the
spectral reflectances of the near infrared, red, and blue bands in MODIS
imagery, respectively (Huete et al., 2002).

The Ws is modified as follows from the equation for Wscalar (Xiao,
Hollinger, et al., 2004):

Wscalar ¼
1þ LSWI

1þ LSWImax
; ð8Þ

where LSWI is the Land Surface Water Index and LSWImax is the maxi-
mum LSWI during the growing season for each pixel (Xiao, Hollinger,
et al., 2004). Because the values of Wscalar depend upon LSWImax, there
may be similar or identical Wscalar values under different vegetation
types even though their actual canopy water content varies consider-
ably. Thus,Wscalar can represent a temporal dynamic but spatial pattern
of moisture conditions. In this version of the PCM, LSWImax was as-
sumed to be 1 to allow spatial comparison. The modified equation for
Wscalar, i.e.,Ws, is capable of representing both temporal and spatial var-
iation in moisture conditions.

The equation for LSWI is as follows (Xiao, Hollinger, et al., 2004):

LSWI ¼ ρnir−ρswir

ρnir þ ρswir
; ð9Þ

where ρnir andρswir are the spectral reflectances of the near infrared and
short infrared bands in MODIS imagery, respectively (Xiao, Hollinger,
et al., 2004).

3. Data and methods

3.1. Description of study sites

The multi-year flux and meteorology data used in this study were
collected from five natural vegetation types with eddy-covariance
towers operating in the Chinese Terrestrial Ecosystem Flux Observa-
tional Network (ChinaFLUX), including temperate mixed forest (the
broad-leaved Korean pine mixed forest in the Changbai Mountains,
CBS) and temperate steppe (NM) in North China and alpine shrubland
(HBGC), alpine marsh (HBSD) and alpine meadow-steppe (DX) on the
Tibetan Plateau. The mean annual precipitation (MAP) is 600–810 mm
in CBS, approximately 600 mm in HBGC and HBSD, and 480 mm in
DX. The water supply is almost not limited in these vegetation types.
NM is located in the semi-arid region with an MAP of 350.9 mm, and
water is a dominant factor. A brief description of these vegetation
types is presented in Table 1. Detailed information about the climate,
vegetation and soil in each vegetation type can be found in the refer-
ences in Table 1.
Table 2
The statistics of the PCM parameterization and validation (r2: coefficient of determination, SE: s
error, and EF: modeling efficiency).

Site code Parameterization

PCmax

(mol C m−2 d−1)
r2 SE

(mol C m−2 d−1)
MNB RMSE

(mol C m−2 d

CBS 2.61 0.92 0.02 −0.24 0.10
NM 2.06 0.81 0.01 2.76 0.04
NMa 2.18 0.83 0.01 2.07 0.04
HBGC 1.75 0.95 0.01 0.48 0.04
HBSD 1.38 0.90 0.01 2.25 0.05
DX 2.00 0.83 0.00 0.26 0.02

a The site-year 2005 was excluded from model parameterization and validation due to seve
3.2. Flux data

Subtractingnet ecosystemexchange of CO2 (NEE; a negative sign de-
notes carbon entering the ecosystem from the atmosphere, whereas a
positive sign denotes carbon release from the ecosystem into the atmo-
sphere) fromecosystem respiration (Re) gives gross primary production
(GPP). NEE was directly measured by the eddy covariance approach. A
method presented by Reichstein et al. (2005) was used to estimate Re.
The detailed procedures are presented below.

The original observed half-hourly NEE values were processed by
three-dimensional coordinate rotation, WPL correction, storage correc-
tion (only for the forest site), and filtering to exclude invalid data (Yu
et al., 2006). Missing daytime NEE values (when the solar elevation
angle ≥ 0) were calculated with the Michaelis–Menten equation
(Michaelis & Menten, 1913). Daytime Re values were calculated with
the Lloyd and Taylor model using the soil temperature at 5 cm depth
as the input variable (Lloyd & Taylor, 1994; Reichstein et al., 2005).
Valid nighttime NEE (i.e., nighttime respiration when the solar eleva-
tion angle b 0) and the soil temperature at 5 cm depth were used to
estimate the activation energy parameter (E0) of the Lloyd and Taylor
model every 5 days using a 15-day moving window. The final E0 for the
whole yearwas calculated as the average of the three E0with the smallest
standard errors. The reference respiration (Rref) for the Lloyd and Taylor
model was estimated every 5 days using a 10-day moving window.

Based on the filled half-hourly daytime NEE data and the calculated
daytime Re, half-hourly GPP values were obtained and then summed to
yield daily values. The site-years with more than 10% of the daily GPP
values missing were NM in 2006, HBSD in 2007 and DX in 2008. To be
consistent with the time scale of the MODIS images, the flux and mete-
orology data were separately averaged within the same 8-day periods.
3.3. Remote sensing data

EVI, LSWI and MOD11A2 LST products were downloaded from the
University of Oklahoma Data Center (http://www.eomf.ou.edu/
visualization/manual/). The MOD17 GPP products were downloaded
from the Oak Ridge National Laboratory Distributed Active Archive Cen-
ter (ORNL DAAC. 2012. MODIS subsetted land products, Collection 5.
Available on-line [http://daac.ornl.gov/MODIS/modis.html] from ORNL
DAAC, Oak Ridge, Tennessee, U.S.A. Accessed 3 29, 2013). All MODIS im-
ages were 8-day composites. EVI and LSWI have a spatial resolution of
500 m, and the MOD11A2 LST and the MOD17 GPP products have a
tandard error of the simulated GPP, MNB:mean normalized bias, RMSE: rootmean square

Validation

−1)
EF r2 SE

(mol C m−2 d−1)
MNB RMSE

(mol C m−2 d−1)
EF

0.92 0.93 0.05 −0.24 0.10 0.91
0.81 0.83 0.01 2.74 0.04 0.28
0.83 0.84 0.01 2.10 0.04 0.77
0.95 0.95 0.03 0.49 0.04 0.95
0.90 0.91 0.02 2.26 0.05 0.89
0.82 0.85 0.01 0.24 0.03 0.78

re drought. This PCmax was chosen as the maximum photosynthetic capacity in NM.

http://www.eomf.ou.edu/visualization/manual/
http://www.eomf.ou.edu/visualization/manual/
http://daac.ornl.gov/MODIS/modis.html


Fig. 2. The relationship betweenmaximumphotosynthetic capacity (PCmax) andmean an-
nual nighttime LST (LSTan). CBS: temperatemixed forest, NM: temperate steppe, HBGC: al-
pine shrubland, HBSD: alpine marsh, and DX: alpine meadow-steppe.
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spatial resolution of 1 km. The pixels in which the flux towers were lo-
cated were chosen in this study.

3.4. Parameterization and validation

Multi-year eddy CO2 flux data from five vegetation types in North
China (temperate mixed forest and temperate steppe) and the Tibetan
Fig. 3. The seasonal and interannual variation in the observed GPP and simulated GPP, based on
simulated GPP. A: temperate mixed forest (CBS), B: temperate steppe (NM), C: alpine shrublan
Plateau (alpine shrubland, alpine marsh, and alpine meadow-steppe)
were used for model parameterization and validation. The site-years
with more than 10% of the observed daily GPP values missing, i.e., NM
in 2006,HBSD in 2007 andDX in 2008,were excluded fromboth analyses.

All effective site-year data were used to estimate the model param-
eter (PCmax) for each vegetation type. PCmax was taken as the slope of
the relationship between the observed GPP and the product of EVIs
and Ws. The model was validated using the method of training/evalua-
tion splitting cross-validation (Migliavacca et al., 2011). The data for
each site-year were excluded one at a time, with the remaining site-
years as the training data to fit themodel parameter, and then to predict
the excluded site-year. During the model validation, statistics were cal-
culated and averaged for each vegetation type to assess the perfor-
mance of the model. The statistics include the coefficient of
determination (r2), standard error (SE), mean normalized bias (MNB),
root mean square error (RMSE) and modeling efficiency (EF).

r2 ¼

Xn
i¼1

xi− x
−� �

yi− y
−� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

xi− x
−� �2 �

Xn
i¼1

yi− y
−� �2

s
0
BBBB@

1
CCCCA

2

; ð10Þ

SE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

yi−�yð Þ2

n

vuuut
ffiffiffi
n

p ; ð11Þ
an 8-day average. The open dots denote the observed GPP, and the black lines denote the
d (HBGC), D: alpine marsh (HBSD), and E: alpine meadow-steppe (DX).
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MNB ¼ 1
n

Xn
i¼1

ðyi−xi
xi

Þ; ð12Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

xi−yið Þ2

n
;

vuuut
ð13Þ

EF ¼ 1−

Xn
i¼1

xi−yið Þ2

Xn
i¼1

xi− x
−� �2

; ð14Þ

where the xi are the observed data, the yi are the simulated data and x−

and y− are the averages of the observed and simulated data, respective-
ly. The quantity r2 represents the fraction of the variation in the
observed data that can be explained by the model. MNB and RMSE
are used to measure the biases that cause the simulated data to differ
from the observations. EF represents the consistency of the observed
values with the simulated values and is sensitive to the systematic
deviation. EF can range from−∞ to 1. An efficiency of 1 (EF=1) corre-
sponds to a perfectmatch between the simulated data and the observed
Fig. 4. The seasonal and interannual variation in EVI, LSWI and air temperature (Ta), based on an
EVI time series (Zhang et al., 2003). A: temperatemixed forest (CBS), B: temperate steppe (NM)
data. An efficiency of 0 (EF = 0) indicates that the model estimates are
as accurate as the mean of the observed data. An efficiency less than 0
(EF b 0) indicates that the observed mean is a better predictor than
the model.

4. Results

4.1. PCmax

The observed 8-day average GPP was linearly related to EVIs × Ws

in each vegetation type (Fig. 1), and the slope of this linear relation-
ship was identified as the maximum photosynthetic capacity (PCmax,
mol C m−2 d−1). The model parameterization showed that PCmax was
lowest in HBSD, highest in CBS and similar in NM and DX (Table 2).
Due to a severe drought in NM in 2005 (precipitation was less than
200mm), this site-year was removed from themodel parameterization.

A regression analysis of PCmax as a function of the ground-observed
mean annual daily air temperature (MAT), nighttime air temperature
(MATn, when the solar elevation angle b 0), daytime air temperature
(MATd, when the solar elevation angle≥ 0) or precipitation (MAP) dur-
ing the study periods indicated that PCmax had significant relationships
with MAT and MATn (Table 3). Because of the strong relationship
between the MATn and the mean annual nighttime Land Surface
Temperature (LSTan) from MODIS LST products, LSTan can explain
8-day average. The gray shadows indicate the growing season thatwas identified from the
, C: alpine shrubland (HBGC), D: alpinemarsh (HBSD), and E: alpinemeadow-steppe (DX).



Fig. 5.Comparisons of the observed GPPwith thepredicted GPP from the PCM, theMODISGPP products and theVPM, based on an 8-day average. The plots are derived from the last year of
the time series for each vegetation type (Table 1). r2: coefficient of determination, SE: standard error of the simulatedGPP (mol Cm−2 d−1), MNB:mean normalized bias, RMSE: rootmean
square error (mol C m−2 d−1), and EF: modeling efficiency. In the VPM, the phenology factor was set to 1, and the minimum, maximum and optimum temperatures for photosynthetic
activities were separately assumed to be 0, 35 and 20 °C for all five vegetation types (for details seeWu et al. (2009) for CBS, Li et al. (2007) for HBGC andHBSD, and Li et al. (2007) and Liu,
Chen, and Han (2012) for NM and DX). PAR was calculated from shortwave radiation (SW) using the equation of SW≈ 0.505 × PAR (Unit: PAR, mol m−2 s−1; SW, W m−2; Mahadevan
et al., 2008).
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approximately 86% of the variation in PCmax (Table 2). Thus, the follow-
ing linear equation in LSTan can be used to estimate the spatial variation
in PCmax (Fig. 2):

PCmax ¼ 0:1346� LSTan þ 2:7522: ð15Þ

4.2. Seasonal and inter-seasonal dynamics of the PCM-estimated GPP

Using the parameterized PCmax in Table 2, the PCMwas executed to
estimate GPP for all site-years for each vegetation type (Fig. 3). In most
cases, the beginning and ending dates of the simulated GPP agreed well
with those of the observed GPP, and the simulated maximal GPP was
also in good agreement with the observed maximal GPP. The PCM-
simulated GPP and the flux-observed GPP displayed most consistent
seasonal and inter-seasonal variations in HBGC, followed by CBS and
HBSD (Table. 2, Fig. 3A, C and D). However, NM and DX showed several
Fig. 6. The observed GPP plotted against (I) half-hourly incident PAR (inPAR) during the peak g
growing season for the studyperiods and (III) 8-day average inPARduring the growing season fo
equation of SW≈ 0.505× PAR (Unit: PAR,molm−2 s−1; SW,Wm−2;Mahadevan et al., 2008). A
alpine marsh (HBSD), and E: alpine meadow-steppe (DX).
obvious gaps. When a severe drought occurred, i.e., during 2005 in NM
(Fig. 4B), a large discrepancy resulted between the simulated GPP
and the observed GPP (Fig. 3B). When the vegetation was very sparse,
e.g., at the early stage of the 2009 growing season in DX (Fig. 4E), the be-
ginning date of the simulated GPP obviously lagged behind that of the
observed GPP (Fig. 3E). These results indicated that the PCM performs
well in GPP estimation except under conditions of serious drought and
very sparse vegetation.

4.3. Comparison of the predictive accuracy of the PCMwith the MODIS GPP
products and the VPM

Across the studied vegetation types, the statistics from the model
validation were similar to the values from the model parameterization
(Table 2). The model validation showed that the PCM can predict 84–
95% of the variation in the observed GPP.
rowing season of the first year in Table 1 (taken as an example), (II) daily inPAR during the
r the study periods. The inPARwas calculated from the shortwave radiation (SW) using the
: temperatemixed forest (CBS), B: temperate steppe (NM), C: alpine shrubland (HBGC), D:
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To further assess the performance of the PCM inGPP prediction, one-
year data (the last year of the time series for each vegetation type) in
Table 1 were chosen to compare the predictive accuracy of the PCM
with that of the MODIS GPP products and the VPM. The MODIS GPP
products are the principal source of GPP at regional and global scales
(Running et al., 2004; http://daac.ornl.gov/MODIS/modis.html), and
the VPM is a MODIS-based LUE model and has been validated in four
of our studied vegetation types (Li et al., 2007; Wu et al., 2008, 2009;
Zhang et al., 2009). Plots of the predicted GPP against the observed
GPP for these three models are presented in Fig. 5. According to the
values of the statistics, the predictive accuracy of the PCM was higher
than that of the MODIS GPP products and comparable with the VPM.
The regression line of the observed GPP vs. either the PCM-predicted
GPP or VPM-predicted GPP was very close to the 1:1 line. The MODIS
GPP products appeared to overestimate the lower values of the ob-
served GPP and to underestimate the higher values of the observed
GPP. Similar biases of the MODIS GPP products have also been reported
in other studies (e.g., He et al., 2013; Turner et al., 2006; Zhang, Yu, Jiang,
& Tang, 2008).
Fig. 7. Comparison between the observed GPP and the predicted GPP, based on an 8-day averag
following driving variables: A, EVIs alone; B, EVIs × incident PAR (EVIs × inPAR); C, EVIs × poten
(i.e., the PCM). The data are derived from the last year of the time series for each vegetation type
denote the predicted GPP.
5. Discussion

5.1. Impact of photosynthetically active radiation on photosynthesis

As the essential energy source, incident PAR (inPAR) is an important
input variable in light use efficiencymodels (e.g., Monteith, 1972; Potter
et al., 1993; Prince & Goward, 1995; Xiao, Hollinger, et al., 2004). In our
study region during the peak growing season, when inPAR has themost
direct influence on photosynthesis (Fig. 6I), there are generally three
types of relationships between GPP and inPAR over short time periods
(minutes to hours): positive (light limited), irrelevant (light saturation)
and negative (light exceeds what plants need). If the half-hourly GPP
and inPARwere summed to obtain daily values (Fig. 6II) or further aver-
aged to 8-day values over the growing season in the study periods
(Fig. 6III), GPP had little or no relationship with inPAR. Although the
GPP-inPAR response was analyzed separately for each site-year, r2 was
nearly as low as in the all site-years in each vegetation type (data not
shown). These results indicated that inPAR only slightly constrains pho-
tosynthesis on an 8-day time scale in our studied vegetation types.
e. The predicted GPP values were calculated from five formulas for the GPPmodel, with the
tial PAR (EVIs × pPAR); D, EVIs × potential PAR ×Ws (EVIs × pPAR×Ws); and E, EVIs ×Ws

(Table 1).Ws: moisture index. The open dots denote the observed GPP, and the black lines

http://daac.ornl.gov/MODIS/modis.html


Table 4
The statistics of the predicted GPP from five formulas for the GPP model, which were separately driven by EVIs alone, EVIs × incident PAR (EVIs × inPAR), EVIs × potential PAR (EVIs ×
pPAR), EVIs × potential PAR × Ws (EVIs × pPAR × Ws) and EVIs × Ws (i.e. the PCM). The data are derived from the last year of the time series for each vegetation type (Table 1).Ws: mois-
ture index. r2: coefficient of determination, SE: standard error of the simulated GPP, MNB: mean normalized bias, RMSE: root mean square error, and EF: modeling efficiency. CBS: tem-
perate mixed forest, NM: temperate steppe, HBGC: alpine shrubland, HBSD: alpine marsh, and DX: alpine meadow-steppe.

Site code Formula r2 SE (mol C m−2 d−1) MNB RMSE (mol C m−2 d−1) EF

CBS EVIs 0.97 0.05 −0.04 0.06 0.97
EVIs × inPAR 0.92 0.06 −0.09 0.11 0.90
EVIs × pPAR 0.97 0.05 −0.14 0.06 0.97
EVIs × pPAR × Ws 0.97 0.05 −0.17 0.06 0.97
EVIs × Ws 0.97 0.05 −0.09 0.06 0.97

NM EVIs 0.86 0.01 0.69 0.05 0.78
EVIs × inPAR 0.85 0.01 0.51 0.05 0.78
EVIs × pPAR 0.85 0.01 0.41 0.05 0.77
EVIs × PAR × Ws 0.85 0.01 0.23 0.05 0.76
EVIs × Ws 0.86 0.01 0.45 0.05 0.77

HBGC EVIs 0.93 0.03 0.23 0.05 0.93
EVIs × inPAR 0.95 0.03 0.18 0.04 0.95
EVIs × pPAR p 0.96 0.03 0.17 0.04 0.95
EVIs × pPAR × Ws 0.97 0.03 0.02 0.03 0.97
EVIs × Ws 0.96 0.03 0.06 0.04 0.96

HBSD EVIs 0.88 0.02 0.89 0.06 0.85
EVIs × inPAR 0.86 0.02 0.91 0.06 0.85
EVIs × pPAR 0.91 0.02 0.66 0.06 0.87
EVIs × pPAR × Ws 0.94 0.02 0.40 0.05 0.90
EVIs × Ws 0.92 0.02 0.58 0.05 0.88

DX EVIs 0.75 0.01 −0.58 0.03 0.64
EVIs × inPAR 0.79 0.01 −0.58 0.03 0.66
EVIs × pPAR 0.79 0.01 −0.61 0.03 0.65
EVIs × PAR × Ws 0.78 0.01 −0.64 0.03 0.62
EVIs × Ws 0.74 0.01 −0.61 0.03 0.62
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The temporal variability of inPAR during growing season reflects
two types of variation: low-frequency variation due to seasonal change
in the hours of sunshine (i.e., day length) and high-frequency varia-
tion caused by constantly changing atmospheric conditions (Gitelson
et al., 2012; Sakamoto et al., 2011). It has been showed that the high-
frequency variation in inPAR can introduce large uncertainties
into crop GPP estimation, whereas potential PAR (pPAR), which repre-
sents only the low-frequency variation in inPAR, performs better than
inPAR (Gitelson et al., 2012; Peng et al., 2013). Unlike the PCM, which
uses EVI to represent the photosynthetic capacity, many studies have
employed EVI to indicate the fraction of PAR absorbed by the photosyn-
thetically active parts of the plant canopy (Kalfas et al., 2011; Li et al.,
2007; Wu et al., 2008; Xiao, Hollinger, et al., 2004; Xiao, Zhang, et al.,
2004; Xiao et al., 2005; Yan et al., 2009). To identify the weight of
each item in GPP estimation, five formulas for the GPP model, driven
separately by EVIs alone (model A), EVIs × inPAR (model B), EVIs ×
pPAR (model C), EVIs × pPAR × Ws (model D) and EVIs × Ws (model
E, i.e., PCM), were built to predict GPP (the last year of the time series
for each vegetation type, Table 1), and the outputs were compared
with the observed GPP (Fig. 7, Table. 4). The results showed that
model B was not significantly improved over model A (Fig. 7A and B,
Table 4), whereas the model with pPAR as an input variable performed
better in GPP prediction than that with inPAR (Fig. 7B, C andD, Table 4).
These findings are consistent with the studies in crops (Gitelson et al.,
2012; Peng et al., 2013). According to the various statistics used to as-
sess the performance of the models (Table 4), the predictive accuracy
of model E is comparable with that of the potential PAR-based models
Fig. 8. Plots of the observed GPP against air temperature (Ta), based on an 8-day average during
shrubland (HBGC), D: alpine marsh (HBSD), and E: alpine meadow-steppe (DX).
(Fig. 7C, D and E). This is probably because the potential PAR largely de-
termines the environmental temperature and thus drives the dynamic
changes in canopy chlorophyll content in our study region. Both the
potential PAR and the total content of canopy chlorophyll show similar
seasonal variation and can be effectively represented by EVI.

5.2. Impacts of temperature and moisture on photosynthesis

A number of LUE models incorporate moisture and/or temperature
as important environmental controls in plant photosynthesis (Prince
& Goward, 1995; Running et al., 2004; Xiao, Hollinger, et al., 2004). Be-
cause GPP generally has a sigmoidal relationship with temperature
(Fig. 8), the temperature equation (TEMP) developed for the Terrestrial
Ecosystem Model (TEM) has proven effective in expressing the effect
of temperature on photosynthesis (Raich et al., 1991). In the TEMP,
minimum, maximum and optimal temperatures for photosynthetic ac-
tivities are three necessary input parameters and are, therefore, impor-
tant in GPP estimation. However, these three temperatures are derived
from either ground observations or the literature, both of which limit
the spatial application of TEMP-based GPP models. Furthermore, tem-
perature primarily controls photosynthesis at the beginning and end
of the growing season (Chen et al., 2005; Linkosalo, 2000; Yuan et al.,
2007), which can be represented effectively by the EVI time series
(Zhang et al., 2003). Thus, the PCM does not include temperature as a
constraint. However, whether the PCM is effective in GPP estimation
when the temperature is extremely high or low has not been examined
because these conditions did not occur during the study period (Fig. 4).
the growing season. A: temperatemixed forest (CBS), B: temperate steppe (NM), C: alpine



Fig. 9. Plots of the observed GPP against moisture index (Ws), based on an 8-day average during the growing season. A: temperatemixed forest (CBS), B: temperate steppe (NM), C: alpine
shrubland (HBGC), D: alpine marsh (HBSD), and E: alpine meadow-steppe (DX).
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Although the observed GPP responds almost linearly to the moisture
index during the growing season in each vegetation type (Fig. 9), the
PCM does not perform well under conditions of serious drought (NM
in 2005, Fig. 3B).

5.3. Application of the PCM at regional scale

The PCM can potentially be used in regional GPP estimation. The
PCM follows Monteith's (1972, 1977) logic and is entirely driven by
the MODIS imagery. This approach avoids the introduction of substan-
tial simulation errors into regional estimation due to the coarse spatial
resolution of ground observations (Rahman et al., 2005; Sims et al.,
2008; Wu, Niu, & Gao, 2010; Yang et al., 2007). The model parameter
(PCmax) has a clear ecological meaning and is linearly correlated with
the mean annual nighttime LST retrieved from MODIS imagery. Using
this linear equation, Eq. (15), to replace the PCmax in the PCM, the
PCM-simulated GPP can explain 93% of the variation in the flux-
observed GPP across all five vegetation types (Fig. 10). Furthermore,
with the development of remote sensing techniques and algorithms re-
lated to canopy chlorophyll content andmoisture conditions, the PCM is
promising to provide more accurate estimates of GPP.

6. Conclusions

This study developed a MODIS-based Photosynthetic Capacity
Model (PCM) for simulating gross primary production (GPP) of terres-
trial ecosystems in North China and the Tibetan Plateau. The PCM fol-
lows Monteith's logic and is driven solely by the Enhanced Vegetation
Index (EVI) and the Land Surface Water Index (LSWI) fromMODIS im-
agery. The predictive accuracy of the PCM was higher than that of the
MOD17 products and comparable with the VPM and the potential
PAR-based GPP model. The model parameter (PCmax) that represents
the maximum photosynthetic capacity had a close linear relationship
Fig. 10. Comparison between the flux-observed GPP and the PCM-simulated GPP, based
on an 8-day average. The PCmax of the PCM was calculated from Eq. (15). Multi-year
data fromallfive vegetation types are plotted in thefigure. r2: coefficient of determination,
SE: standard error of the simulated GPP (mol C m−2 d−1), MNB: mean normalized bias,
RMSE: root mean square error (mol C m−2 d−1), and EF: modeling efficiency.
with the MODIS-derived mean annual nighttime Land Surface Temper-
ature (LSTan). This relationship provides a possible approach to the use
of the PCM to estimate GPP at a regional scale. However, the perfor-
mance of the PCM in other vegetation types or regions still needs fur-
ther study.
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