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Abstract An accurate and synoptic quantification of gross
primary production (GPP) in wetland ecosystems is essential
for assessing carbon budgets at regional or global scales. In
this study, a satellite-based Vegetation Photosynthesis Model
(VPM) integrated with observed eddy tower and remote sens-
ing data was employed and adapted to evaluate the feasibility
and dependability of the model for estimating GPP in an
alpine wetland, located in Zoige, Southwestern China. Eddy
flux data from 2-year observations showed that temperature
explained most of the seasonal variability in carbon fluxes and
that warming increased GPP and ecosystem respiration, and
hence affected the carbon balance of alpine wetlands. The
comparison between modeled and observed GPP fluxes indi-
cated that simulated values were largely in agreement with
tower-based values (P<0.0001). 12-year long-term simula-
tions (2000–2011) found that (1) there was significantly in-
creasing trends at rate of 17.01 gCm−2 year−1 for annual GPP

(R2=0.62, P=0.002); (2) the inter-annual variation in GPP
was highly sensitive to climate warming; and (3) a warmer
climate can prolong the plant growing season and, by that,
increase wetland productivity. Our results demonstrated that
the satellite-driven VPMmodel has the potential to be applied
at large spatial and temporal scales for scaling-up carbon
fluxes of alpine wetlands.

Keywords Climate change . Remote sensing .Model . Eddy
covariance . Qinghai-Tibetan Plateau .Wetland

Introduction

Terrestrial carbon (C) fluxes represent a major source of
uncertainty in estimates of future atmospheric greenhouse
gases accumulation and, hence, model predictions of climate
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change impacts on global C cycling (Friedlingstein et al.
2006; Huntingford et al. 2009). Wetlands represent one of
the largest sources of this uncertainty and are regarded as
one of the largest ‘unknowns’ regarding future C dynamics
and greenhouse gas fluxes in the context of global change and
climate policy-making (Sulman et al. 2009). Wetlands cover
5–8 % of the world’s land surface and contain about 12 % of
the global C pool, playing an important role in the global C
cycle and potentially have significant impacts on the local
climate (Erwin 2009; Rotenberg and Yakir 2010; Kayastha
et al. 2012; Mitsch et al. 2012). Accordingly, accurate esti-
mates of carbon dioxide (CO2) fluxes between wetland eco-
systems and the atmosphere across regions, continents and
global scales are extremely valuable for precisely quantifying
the global C balance and for developing accurate and predic-
tive global C cycle models (Hao et al. 2011; Kang et al. 2011;
Mitsch et al. 2012; Hao et al. 2013).

Recently, the eddy covariance (EC) technique provides
continuous measurements of ecosystem-level exchanges of
carbon, water, and energy at diurnal, seasonal, and inter-
annual scales, allowing us to examine their changes and
regulative mechanisms at multiple temporal scales
(Baldocchi et al. 2001; Leuning et al. 2005; Yan et al. 2008;
Kang et al. 2013). The fluxes of net ecosystem CO2 exchange
(NEE) measured with this micrometeorological method can
provide valuable information related to photosynthetic period
and gross primary production (GPP) at the ecosystem scale
(Sanderman et al. 2003; Hao et al. 2010; Malhi 2012). How-
ever, EC method only provides very limited CO2 flux data
over footprints with restricted sizes and varied shapes (linear
dimensions typically ranging from hundreds of meters to
1 km). Scaling up those CO2 flux measurements from
site level to regional or global scales is challenging
because of the large spatial heterogeneity (Asner et al.
2012; Belshe et al. 2012) and interactions among eco-
systems (Chen et al. 2006).

Remote sensing (RS) technology can be an effective tool
for regional studies because it provides consistent and system-
atic observations of vegetation and ecosystems. As such, RS
has become an important tool in the characterization of veg-
etation structure and estimation of GPP and net primary
production (NPP) (Li et al. 2007; Hashimoto et al. 2012).
Satellite-based model, meanwhile, is a connection of integrat-
ing EC observations and RS data for studies of regional
vegetation production and C cycling. Recently, Xiao et al.
(2004a, 2005a, b) have developed the satellite-based Vegeta-
tion Photosynthesis Model (VPM) that estimates GPP upon
the conceptual partitioning of chlorophyll and non-
photosynthetically active vegetation (NPV)within the canopy.
Thorough validation of global models requires testing across a
full range of biome and climate types. During the past decade,
the VPM model has been further developed to include forest,
agriculture and grassland ecosystems (Xiao et al. 2004a, b; Li

et al. 2007; Yan et al. 2009; Liu et al. 2012), which demon-
strated its potential to scale up in situ observations of GPP
from the CO2 flux tower sites. However, so far, the VPM
model has not been evaluated and applied in wetland
ecosystems.

Zoige alpine wetlands, located at the eastern edge of Qing-
hai–Tibetan Plateau, is one of the largest alpine wetlands in
the world and one of biodiversity hot-spots (Wu 1997; Chen
et al. 2008). The wetland has been shown to be very sensitive
to climatic changes (Chen et al. 2009), and this region is
characterized by continuously increasing air temperature and
declining precipitation (Tian 2005; Hao et al. 2011; Chen et al.
2013). These climate changes have the potential to signifi-
cantly alter the wetland C budget. In this study, we aimed to
(1) evaluate Zoige wetland vegetation through analysis of
Moderate Resolution Imaging Spectroradiometer (MODIS)
and C budgets with EC tower flux data in 2008–2009; (2)
evaluate VPM model through CO2 flux data measured with
the EC technique in 2008 and 2009; and (3) apply VPM
model to 2000–2011 period to investigate the impacts of
climate change on wetland carbon uptake.

Materials and Methods

Site Description

The CO2 eddy flux tower site was located in an alpine wetland
ecosystem of the Zoige National Wetland Natural Reserve,
located at the eastern edge of the Qinghai-Tibetan Plateau,
Southwest China (33°56′30″N, 102°52′11″E, 3,430 m above
sea level) (Fig. 1). The Zoige Plateau has an average altitude
of 3,500 m, with well-developed alpine lakes and peatlands.
The alpine wetlands of this region cover an area of 6,180 km2,
which is 31.5 % of the total Zoige plateau area. The region is
characterized by cold Qinghai-Tibetan climatic conditions
with an average annual temperature 1.6 °C and precipitation
623 mm during the period from 1990 to 2009. The warmest
month is July (average: 9.3 to12.2 °C), while the coldest
month is January (average: −5.8 to −11.7 °C).

At the experimental site, a typical closed organic flat wet-
land (a fen with a unique micro-topography, i.e., numerous
scattered hummocks) was selected for this study (Fig. 1). This
type of wetland represents 28 % of the total area of Zoige
wetlands. Water depth at the site is on average about 5 cm, and
the dry hummocks (irregularly shaped) are up to about 20 cm
high above the water level. The pH of the soil slurry
was 6.8–7.2. The dominant vegetation at the dry hum-
mocks is composed of Kobresia tibetica, Cremanthodium
pleurocaule, Potentilla bifurca, and Pedicularis sp., occupy-
ing about 45 % of the whole site. Carex muliensis and
Eleocharis valleculosa are the two predominant plant species
scattered in hollow area.
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Site-Specific CO2 Flux and Climate Data Measurements

The Eddy Covariance (EC) instrument was established at the
experimental site in October 2007 (Fig. 1). Net Ecosystem
CO2 Exchange (NEE) was measured continuously with the
EC system. The fetch from all directions was set to be more
than 200 m based on the calculation with a footprint model
(Kljun et al. 2004). Briefly, a three-axis sonic anemometer
(model CSAT3, Campbell Scientific, MS, USA) with an fast
response open path infrared CO2/H2O gas analyzer (IRGA, LI
7500, LI-COR Inc. NE, USA) was installed at a height of
2.2 m above ground level to measure the fluctuations in three
wind components (w, u, v) and CO2 fluxes. The instrument
provided high frequency measurements (10 HZ), and the
turbulent fluxes data were recorded as half-hour averages by
a datalogger (CR5000, Campbell Scientific). In addition,
some environmental factors used for gap filling calculations
were also measured nearby the eddy covariance tower: net
radiation and photosynthetically active radiation (PAR), air
temperature and humidity, wind speed, precipitation, soil tem-
perature and volumetric water content. All meteorological
data from the sensors were collected and stored in a digital
datalogger (DT80, Datataker. Australia). More details of the
instrument are described by Hao et al. (2011).

Data Quality Control and GPP Estimation

Data quality control was implemented to reduce the
measurement-induced uncertainties. Subsequent to data collec-
tion, half-hour average CO2 fluxes were adjusted by the WPL
(Webb, Pearman and Leuning) algorithm (Webb et al. 1980).
Since low friction velocity (u*) and weak turbulence can result
in underestimation of the CO2 exchange rates (Goulden et al.
1996), only flux data with u* greater than 0.2 m s−1 were used.
Through screening with the data quality control process,

roughly 40 % of the data obtained from the EC tower were
excluded due to the rainfall or snowfall events or the instrument
malfunctions (e.g., system maintenance, power outages etc.).
Gap-filling approaches such as the mean diurnal variation
(MDV) (Falge et al. 2001) and the interpolation methods
(Baldocchi 2003) were used to fill the data gaps. More details
of the data quality control are described by Hao et al. (2011).

The CO2 fluxes measured with the EC technique represent
NEE, which is the balance between GPP and ecosystem
respiration (Re) (Law et al. 2002). So, the value of GPP can
be calculated as the difference between Re and NEE:

GPP ¼ Re−NEE ð1Þ

where the positive and negative values of NEE represent net
loss and gain of carbon (CO2 fluxes) by the soil-vegetation
system, respectively.

Daily Re is the sum of the daytime ecosystem respiration
(Re, day) and the nighttime ecosystem respiration (Re, night):

Re ¼ Re;day þ Re;night; ð2Þ

Re, night is derived from the nighttime net exchange. Since
the Re, night is related to the soil temperature, a temperature
dependent model was derived from the measured nighttime
average half-hour net CO2 exchange fluxes (Re, night):

Re;night ¼ a e bTsð Þ; ð3Þ

where Ts represents the soil temperature (°C) at the depth of
0.05m and a (μmol of CO2m

−2 s−1) and b (°C) are coefficients.
Thus, by extrapolating the exponential regression correla-

tion to the daytime periods, we estimated Re, day as well as GPP.
Daily GPP and climate data were then aggregated to 8-day

intervals to be consistent with MODIS 8-day composites. The
aggregated 8-day GPP and climate data observed in 2008 and
2009were utilized to support model simulations and validation.

Fig. 1 The geographical location
of the Zoige alpine wetland
research site. The pictures of field
site, eddy tower and
Meteorological Station were took
in November 2008
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Path Analysis

To evaluate the dependence of CO2 fluxes on several climate
parameters, we used path analysis for EC data from 2008 to
2009. Path analysis has previously been applied to CO2 fluxes
data to evaluate the relative importance of various microme-
teorological factors in regard to seasonal and annual CO2

fluxes variability (Saito et al. 2008; Wang et al. 2011; Matías
et al. 2012). Path analysis is an extension of multiple regres-
sions and can be used to provide estimates of the magnitude
and significance of hypothesized causal connections among
variables. In this study, we focused on the following five
environmental variables: air temperature (Ta), Ts, PAR, pre-
cipitation (PPT) and soil water content (SWC) at a depth
between 0 and 5 cm and its importance in long-term CO2

fluxes change of Zoige alpine wetland ecosystem. We tested
the relationships among variables and depicted mediated and
nonmediated relationships in the model. The model was
drawn using observed variables and was recursive.
Bootstrapping was used to determine the significance of the
mediated relationships. Goodness-of-fit indices were used to
evaluate the model. The degree of fit between the covariance
in the observed data with that expected if the workingmodel is
true was first examined by a goodness-of-fit chi-square (x2).
Non-significant x2 indicates that the pattern of covariance
predicted by the hypothesis is no different from observed data,
and thus the model could be accepted. In addition, the normed
fit index (NFI) and the comparative fit index (CFI) were used,
as they are not affected by the number of subjects and the
estimation method, respectively. NFI and CFI range between
0 and 1, and values greater than 0.9 indicate a good fit of the
model to the data. SPSS was used in all analyses with alpha
levels of 0.05. We performed path analysis by using AMOS
20.0 (Analysis of Moment Structures).

MODIS Imagery

The time series data of site-specific vegetation indices during
2000–2011 were extracted from one MODIS pixel that was
centered on the targeted EC tower. The MODIS Land Science
Team provides several data products derived from MODIS
observations to the public, including the 8-day composite
Land Surface Reflectance (MOD09A1). We downloaded the
8-day composite MOD09A1 datasets from the Oak Ridge
National Laboratory’s Distributed Active Archive Center
(DAAC) website (http://daac.ornl.gov/MODIS/modis.shtml).
The datasets include seven spectral bands at a spatial
resolution of 500 m, and have been corrected for the effects
of atmospheric gases, aerosols, and thin cirrus clouds. Then,
reflectance values of four spectral bands (blue band (459–
479 nm), red band (620–670 nm), near infrared (NIR) band
(841–876 nm), shortwave infrared (SWIR) band (1,628–
1,652 nm)) over 2004–2007 were used to calculate three

site-specific vegetation indices: Normalized Difference Vege-
tation Index (NDVI) (Tucker 1979), Enhanced Vegetation
Index (EVI) (Huete et al. 1997), and Land Surface Water
Index (LSWI) (Xiao et al. 2004a).

NDVI is an operational, global-based vegetation index and
has been widely used in describing terrestrial vegetation.
However, the open loop structure (no feedback) of the NDVI
equation renders it still susceptible to large sources of error
and uncertainty over variable atmospheric and canopy back-
ground conditions.

NDVI ¼ ρnir−ρred
ρnir þ ρred

ð4Þ

where ρnir and ρred are the reflectance of NIR and red bands,
respectively.

Owing to these defects of the NDVI, the EVI was proposed
based on a feedback-based approach that incorporates both
background adjustment and atmospheric resistance concepts
into the NDVI.

EVI ¼ 2:5� ρnir−ρred
ρnir þ 6� ρred−7:5� ρblueð Þ þ 1

ð5Þ

where ρnir, ρred and ρblue are the reflectance of NIR, red and
blue bands, respectively.

The SWIR spectral band is sensitive to vegetation water
content and soil moisture. Hence the water-sensitive LSWI
was calculated as the normalized difference between NIR and
SWIR spectral bands (Xiao et al. 2004a):

LSWI ¼ ρnir−ρswir
ρnir þ ρswir

ð6Þ

where ρnir and ρswir are the reflectance of NIR and SWIR
bands, respectively.

Description of the VPM Model

The VPM is built upon the conceptual partitioning of chloro-
phyll (FPARchl) and non-photosynthetically active vegetation
(NPV) within the canopy, and it estimates GPP over the
photosynthetically active period of vegetation (Xiao et al.
2004a). GPP is estimated using the following function:

GPP ¼ εg � FPARchl � PAR ð7Þ

where εg is the light use efficiency (μmol CO2/μmol photo-
synthetic photon flux density, PPFD), PAR is the photosyn-
thetically active radiation (μmol PPFD), and FPARchl is the
fraction of PAR absorbed by leaf chlorophyll in the canopy.
FPARchl is calculated as:

FPARchl ¼ α� EVI ð8Þ
where EVI is the Enhanced Vegetation Index, α is the coeffi-
cient in the EVI-FPARchl linear function, which is set to be 1.0.
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The parameter εg is affected by temperature, water and leaf
phenology:

εg ¼ ε0 � T scalar �W scalar � Pscalar ð9Þ
where ε0 is the maximum light use efficiency (LUE) (μmol
CO2/μmol PPFD), and Tscalar,Wscalar, and Pscalar are the down-
regulation scalars for the effects of temperature, water and leaf
phenology on LUE, respectively. In the VPM model, ε0 is
estimated for each type of ecosystem individually. In order to
obtain the ε0 values for alpine wetland, we had estimated the
nonlinear model between NEE and PAR by using the
Michaelis–Menten function (Eq. (4)), based on data collected
during the peak period of vegetation growth (from May to
September) in 2008 and 2009. Here, we used 0.53 μmol CO2/
μmol PPFD as ε0 for 2008 and 2009, respectively:

NEE ¼ ε0 � PAR� GPPmax

ε0 � PAR� GPPmax
−Reco ð10Þ

where the GPPmax (mg CO2 m
−2 s−1) is the ecosystem max-

imum photosynthetic capacity, and Reco is ecosystem respira-
tion. The estimated ε0 value is used as an estimate of the
maximum light use efficiency parameter in the VPM model.

Tscalar was estimated at each time step using the following
equation:

Tscalar ¼ T−Tminð Þ T−Tmaxð Þ
T−Tminð Þ T−Tmaxð Þ½ �− T−Topt

� �2 ð11Þ

where Tmin, Tmax and Topt are minimum, maximum and opti-
mal temperature for photosynthetic activities, respectively.

Wscalar was calculated by utilizing an alternative and simple
approach using a water-sensitive vegetation index:

Wscalar ¼ 1þ LSWI

1þ LSWImax
ð12Þ

where LSWImax is the maximum LSWI (Land Surface Water
Index) during the study period. As a parameter describing
water status, LSWImax varies across years. We chose the max-
imum LSWI values during the plant growing season for each
year as LSWImax. The LSWImax value is 0.26 and 0.36 for 2008
and 2009, respectively.

Pscalar is included to account for the effect of leaf age on
photosynthesis at the canopy level, and depends on leaf
longevity:

Pscalar ¼ 1þ LSWI

2
ð13Þ

In this study, since this was the first time for VPM to be
applied for C studies for the alpine wetland in China, we first
tested VPM against part of observed data for calibration. In
alpine ecosystems, temperature is often the major environ-
mental variable constraining CO2 fluxes. Therefore, the

calibration focused on three groups of temperature input pa-
rameters for plant growth, such as Tmin, Tmax and Topt. The
temperature parameters for the alpine wetland simulated in the
study were carefully calibrated based on the long term ob-
served datasets of the local air temperature data and observed
GPP data to ensure they could correctly represent the local
vegetation community.When air temperature falls below Tmin,
Tscalar is set to zero. In this study, we finally used Tmin of 0 °C,
Topt of 16 °C and Tmax of 32 °C for Zoige wetland to support
VPM simulation.

By running the VPM model at a 8-day time scale with
vegetation indices derived from the 8-day MODIS surface
reflectance product and site-specific data of air temperature
and PAR, we obtained the seasonal and annual dynamics of
GPP for each year (2008 and 2009). The simulated GPP data
from the VPM model were then compared with the observed
GPP data from the EC tower for 8-day intervals to validate the
applicability of the VPM model to the Zoige alpine wetland.

Statistics for Comparison Between VPM-Predicted
and Tower-Based GPP Fluxes

As suggested by Addiscott and Whitmore (1987) and Smith
et al. (1997), to quantify the discrepancy between the simu-
lated and observed results, we adopted three statistical criteria
for the validation tests: the coefficient of determination (R2,
Eq. (14)), the root of mean square error (RMSE, Eq. (15)) and
the relative mean deviation (RMD, Eq. (16)). Each criterion
investigates a specific aspect of the correlation. The R2 repre-
sents a common regression coefficient indicating the ability of
the model to explain variation in the observed values and to
assess howwell the shape of the simulationmatches that of the
measured data (Janssen and Heuberger 1995). The RMSE
provides the model’s prediction error by heavily weighting
high errors, whereas the RMD weights all errors the same,
which tends to smooth out the discrepancies between modeled
and observed values. The values of RMD close to 0 indicate
the absence of bias in the model (Huang et al. 2009). All
statistical calculations were performed using SPSS version
20.0 (SPSS Inc., Chicago/United States).

R2 ¼
X

Oi−O
� �

Pi−P
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
Oi−O

� �2X
Pi−P

� �2
r

0
BB@

1
CCA

2

ð14Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
Pi−Oið Þ2
n

s
ð15Þ

RMD ¼ 100

O

Xn

i¼1

Pi−Oi

n
ð16Þ
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where Oi and Pi represent the observed and model-predicted
values, respectively.O and P are the mean of the observed and
predicted values, respectively. n is the number of observations.

Results

Seasonal Dynamics of Observed Climate and CO2 Flux
in 2008–2009

There was pronounced seasonal variation in mean 8-day Ta,
ranging from −12.9 to 12.4 °C (Fig. 2a). PAR was somewhat
lower in 2008 than that in 2009; in both years values were
markedly lower in winter than in summer. The annual mean
Ta in 2008 was 1.5 °C lower than the long-term (1990–2009)
mean (1.6 °C); whereas the respective value in 2009
was 2.6 °C higher than the long-term mean. Moreover, pat-
terns of precipitation (PPT) differed between years

(Fig. 2b, c). Long-term climate data in the region of the study
site reveals that the annual precipitation (rainfall and snowfall)
in 2008 was 465 mm lower than the long-term mean
(623 mm); whereas the respective value in 2009 was
596 mm also lower than the long-term mean.

The aggregated 8-day observed NEE, GPP and Re time
series derived from the EC flux tower showed large seasonal
and inter-annual variation (Fig. 3a). The seasonal dynamics of
CO2 fluxes could be explained in part by the seasonal dynam-
ics of Ta and PAR (Figs. 2a and 3). During the dormant period
(from November to April), characterized by low air tempera-
ture and frozen soils inhibiting photosynthetic activity, GPP
values were near zero, and NEE values were low and largely
driven by ecosystem respiration (Fig. 3a). After this period,
the ecosystem photosynthesis capability gradually increased
as PAR intensified and air temperature crossed the limit of
minimum temperature of photosynthetic activities. GPP
started to increase in early May or late April, and ended in
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late October in both years. The plant growing season in 2008
and 2009, defined as the carbon uptake period, was from early
May to late October and from late April to late October,
respectively. GPP and Re gradually increased and reached
peak values in July or August. Thereafter, GPP and Re grad-
ually decreased as soil temperature decreased and vegetation
started to senesce. The duration of net CO2 uptake (NEE < 0)
in 2009 (128 days) was slightly longer than in 2008
(120 days). These results implied that temperature played an
important role in determining the seasonal variation of CO2

fluxes (Fig. 3b–d). At the annual scale, the Zoige wetland
ecosystem was a sink of atmospheric CO2 with 47.1 and
79.7 g C m−2 year−1 sequestered in 2008 and 2009 based on
the observed data, respectively. The results implied that the
Zoige wetland was a sink of atmospheric CO2 both in 2008
and 2009 although the droughts in both years substantially
enhanced the C losses from the ecosystem.

Determinants of CO2 Fluxes

Goodness-of-fit indices (x2, NFI and CFI) indicate a good fit
of the model to the data (Fig. 4). Among the five factors (Ta,
Ts, SWC, PAR, and PPT) directly affecting CO2 fluxes during
the growing season, the path coefficients of Ts and SWCwere
0.65 and −0.42 for GPP (P<0.001; Fig. 4a), 0.41 (P<0.05)
and −0.11 (P>0.05) for Re (Fig. 4b), −0.74 and 0.49 for NEE
(P<0.01; Fig. 4c), respectively–much higher than the

contributions of the other environmental factors. Furthermore,
the total causal effect (the sum of the direct and indirect
effects) of Ta on CO2 fluxes was 0.59 for GPP, 0.71 for Re

and −0.31 for NEE. Additionally, soil water content explained
a significant part of the variation for GPP and NEE, but not for
Re (Fig. 4).

Seasonal Dynamics of Vegetation Indices

The EVI and NDVI indices shows that the plant growing
season for this wetland site is from early May and late April
to late October in 2008 and 2009, respectively, reaching a
plateau value during late summer (early July) to early autumn
(late August), then starting to decline again (Fig. 5a). Howev-
er, seasonal dynamics of the EVI differed from those of the
NDVI in terms of phase and magnitude. The NDVI remained
at peak values for a longer time than the EVI. Further, the peak
EVI values were 0.57 and 0.65 for 2008 and 2009, respec-
tively, while the peak NDVI values were 0.78 and 0.83. The
seasonal dynamics of EVI and NDVI could be explained in
part by the seasonal dynamics of air temperature (Fig. 5b–c)
and PAR (Fig. 2a). The LSWI also showed seasonal dynam-
ics, but less than the NDVI and EVI, especially during the
growing season. The peak LSWI values were 0.26 (DOY 177)
and 0.34 (DOY 193) for 2008 and 2009, respectively; this
may indicate that inter-annual changes of LSWI values reflect
the precipitation differences between 2008 (465 mm) and
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2009 (596 mm). During dormant period, the LSWI values
were generally low, often below zero. Low LSWI in the
dormant period reflects the low precipitation and may indicate
some degree of water stress (Fig. 2b–c). The rapid decline of
both the EVI and LSWI in October indicates early plant
senescence, while high EVI and LSWI values in July indicate
a rapidly developing and photosynthetically active canopy in
responses to warmer and wetter conditions (Fig. 5a).

Relationships Between Vegetation Indices and Observed GPP

The seasonal dynamics of GPP correlated well with the dy-
namics of the vegetation indices (EVI, NDVI, and LSWI)
(Figs. 5a and 6). The quantitative relationships between the
vegetation indices and CO2 flux data clearly demonstrated that
the EVI (R2=0.62, P<0.001) had a higher predictive power in
terms of the phase and magnitude of photosynthesis than the
NDVI (R2=0.49, P<0.001) for the Zoige wetland ecosystem
(Fig. 6a, b). Moreover, the regression of LSWI against ob-
served GPP values (R2=0.64, P<0.001; Fig. 6c) showed that
land surface water content was significantly correlated with
carbon fluxes measured at the EC tower.

VPM Simulations Against Observations in 2008 and 2009

Patterns and magnitudes of the simulated GPP were well in
agreement with the observation, accurately simulating the
trajectories of the observed seasonal and inter-annual variation
in GPP (Fig. 7a). The VPMmodel also accurately captured the
U pattern of the plant growth driven by the variation in
temperature and PAR. For both years, linear regression anal-
ysis of the modeled and observed GPP and three statistical
criteria for the validation tests showed a strong correlations
between our simulation and observations (P<0.0001;
Fig. 7b–d; Table 1). Moreover, Statistical analysis of
the residual values of GPP showed that the residuals
were not randomly distributed (Fig. 7e). In absolute
magnitude, low residual values of GPP were generally
associated with low prediction errors of model, whereas
high GPP residual values were associated with high prediction
errors of model. At the annual scale, the modeled GPP values
were only slightly higher than the observed GPP values in
2008, and only slightly lower than the observed GPP in 2009,
with relative error (RE) values of 2 % and −6 %, respectively
(Table 2). Furthermore, averagedGPP predicted for the 2 years
of study agreed reasonably well with the observed values,
with −2 % mean RE (Table 2).

Inter-Annual Variation of GPP in 2000–2011 as Predicted
by the VPM Model

Given the encouraging results from the model validation tests,
we utilized the VPM model for estimating and reproducing
long-term seasonal and inter-annual GPP dynamics for the
tested Zoige alpine wetland. We built a 12-year (2000–2011)
daily weather dataset (air temperature, precipitation and PAR)
obtained from the climate database of our local meteorological
station and the studied station of China Meteorological Ad-
ministration and we obtained the time-series dataset of vege-
tation indices derived from satellite images for the very loca-
tion. By running the VPM model for this 12-year baseline
climate scenario, we obtained seasonal and annual GPP
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dynamics for each year. There were strong and positive expo-
nential relationships between air temperature and the vegeta-
tion indices EVI and NDVI (Fig. 8a, b). The annual GPP over
12 years varied between 485 and 720 g C m−2 year−1 (Fig. 8c)
and was mainly driven by inter-annual variation in air tem-
perature (Fig. 9). We also detected a significantly increasing
trend of annual GPP (R2=0.46, P=0.02) and oscillation fre-
quency over the course of the experiment. Correspondingly,
we also found that the average annual air temperature at the
study site increased during this period.

Discussion

Effects of Weather Conditions on CO2 Flux

Various environmental factors directly and indirectly affect
CO2 fluxes (GPP, Re and NEE) (Hao et al. 2011; Kang et al.
2011; Matías et al. 2012; Hao et al. 2013; Kang et al. 2013). In
this study, we used a simple path analysis to examine the
relative causality of these environmental variables in control-
ling CO2 fluxes (see Fig. 4). The results indicate that soil
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temperature had the strongest effects on GPP, Re, and NEE
fluxes, which explained most of the seasonal variability in
CO2 fluxes, consistent with the large seasonal temperature
variation on this high altitude alpine wetland. The path anal-
ysis also showed that soil temperature was strongly affected

by air temperature. Taken together, these results indicate that
the C cycling of alpine wetlands is strongly temperature-
driven. To note, at high altitudes, the seasonal variation in
temperature is high. In alpine ecosystems, low temperature is
often the major environmental variable constraining CO2
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Table 1 Comparisons of observed and simulated 8-day GPP during 2008–2009 in Zoige alpine wetland

Observed vs simulated Year R2 RMSE (%) RMD (%) n

8-day GPP 2008 0.56*** 11.97 −7.62 22

2009 0.83*** 7.51 −13.72 25

2008–2009 0.68*** 9.85 −21.33 47

R2 , the coefficient of determination; RMSE the root of mean square error; RMD the relative mean deviation

***Significant at probability levels of 0.0001
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fluxes (Huxman et al. 2003; Hao et al. 2011). Previous studies
of the same alpine wetland have pointed out the importance of
temperature in controlling C fluxes (e.g. Inglett et al. 2012;
Schedlbauer et al. 2012; Xie et al. 2013), and soil temperature
and moisture have also been shown to be important factors
controlling CO2 fluxes in other ecosystems, such as, for
example, semi-arid grasslands in Inner Mongolia, China
(Wang et al. 2011). However, these previous studies did not
compare the relative importance and contribution of other
environmental factors affecting CO2 fluxes. As such our path
analyses provide important new information, clearly demon-
strating that the temperature–both air and soil temperature–
was the main affecting factor for CO2 fluxes over a 2-year
period and a 12-year period this high altitude alpine wetland.
Our findings imply that if global temperatures continue to

increase in the (near) future, the Zoige alpine wetland is likely
to uptake more carbon from atmosphere.

Wetland Vegetation and Phenology as Observed by Satellite
and CO2 Flux Tower

Vegetation indices obtained from MODIS data provide valu-
able information into the processes (e.g., growing season
length and water status) that regulated ecosystem carbon
budgets and an indirect approach for predicting GPP
(Guindin-Garcia et al. 2012). Note that both EVI and NDVI
started to increase in late April to early May, corresponding
well with the increase of GPP in early May. Evidently, one can
use those dates with consistent increases of vegetation indices
(NDVI, EVI and LSWI) in spring after snowmelt as the starting

Table 2 Environmental conditions and comparisons between the observed and simulated annual GPP accumulated from 8-day observations and
simulations during 2008–2009 in Zoige alpine wetland

Year Temperature (°C) PARa (mol m−2) Precipitation (mm) GPPobs
a(g C m−2) GPPvpm

a (g C m−2) REa (g C m−2)

2008 1.58 1521 465 607.76 620.86 2 %

2009 2.55 1572 596 672.1 634.25 −6 %

Mean (2008–2009) 2.07 1547 531 639.93 627.56 −2 %

aAbbreviations: GPP gross primary production; PAR photosynthetically active radiation; GPPobs, observed GPP in 8-day from FLUX tower data;
GPPvpm, simulated GPP in 8-day by VPM; RE (relative error) = [(GPPVPM−GPPobs)/GPPobs] × 100 %
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date of the plant growing season. LSWI values reached its
lowest value in late October, corresponding well with the
ending dates of the carbon uptake period. While one can still
use a threshold of NDVI or EVI to define the ending date of the
plant growing season, LSWI seems to offer a clean and simple
alternative approach to delineate the ending dates of the plant
growing season for Zoige wetlands. Moreover, the EVI is an
‘enhanced version’ of theNDVI andwas developed to optimize
the vegetation signal with improved sensitivity in high biomass
regions, while correcting for canopy background signals and
reducing atmosphere influences (Li et al. 2007;Mu et al. 2007).
In this study, regression analyses between the vegetation indi-
ces and observed GPP (see Fig. 6) indicated that for our alpine
wetland ecosystem the EVI better correlated with the seasonal
dynamics of GPP, and hence, has more biological significance
in GPP predictions than the NDVI.

VPM Model Simulation

Comparisons between simulated and observed GPP results
showed that the EVI-based VPM model can capture the
overall trends of the Zoige alpine wetland phenology and
provides an accurate estimation of GPP (R2=0.77). These
results as well as results from earlier VPM studies (Xiao
et al. 2004a; Li et al. 2007; Wu et al. 2008; Yan et al. 2009;
Liu et al. 2012) indirectly support the chlorophyll-FPARchl-
EVI hypotheses and leaf water-LSWI hypothesis as imple-
mented in the VPM model, and demonstrate the potential of
the satellite-driven VPM model for scaling up GPP measured
at CO2 flux tower sites to much larger spatial scales, which is
an important issue for the study of C cycling and sequestration
at regional and global scales.

In addition, compared with other model (such as MODIS-
PSN), VPM works much better. We downloaded the 8-day
composite GPP products (MOD17A2) data sets from the Oak
Ridge National Laboratory’s Distributed Active Archive Cen-
ter (DAAC) website (http://daac.ornl.gov/MODIS/modis.
shtml) to get GPP results from MODIS-PSN during 2008–
2009 (see Fig. 10). Clearly, the predicted GPP from MODIS-
PSN underestimated GPP relative to that observed from EC
tower and that simulated by VPM model during the rapid
growth and peak growth stage, which might be attributed to
several reasons that may explain the discrepancy between the
GPPMOD17A2 and GPPobs. One is that GPPMOD17A2 uses glob-
al climate dataset, there is a possibility that climate data from
the global climate dataset do not match the local climate data.
Second, it could be light use efficiency parameter (εg) and the
over-correction of vapor pressure deficit (VPD) on light use
efficiency (LUE) inMODIS-PSN (Goetz et al. 1999;Wu et al.
2008). εg is the basis and one of key steps for using the
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Production EfficiencyModels to estimate GPP (Running et al.
1999). If εg differs significantly among vegetation types, these
differences should be accounted for when estimating GPP
with remotely sensed data. Therefore, the eddy covariance
technique provides a significant potential approach to estimate
the canopy-level εg (Turner et al. 2003) and the comparison
indicates that GPPMOD17A2 is substantially different from the
in-situ data, which calls for a caution in using GPPMOD17A2 for
regional analysis in wetlands.

Estimating Long-Term GPP Dynamics

Long-term GPP simulation (2000–2011) further suggests an
important role of temperature in long-term GPP dynamics,
and indicates the potential of further increase in C sequestra-
tion under predicted scenario of global warming. The results
from our modeling study indicate that when the climate be-
comes warmer, the plant growing season extends, and hence,
wetland production increases. The overall increase in the
VPM-modeled GPP between 2000 and 2011 is in agreement
with expectations for high-latitude ecosystems under global
warming (e.g. Oechel et al. 2000; Tagesson et al. 2012).
Warming directly affects plant growth and shifts in plant
species across a range of tundra ecosystems (Walker et al.
2006; Elmendorf et al. 2012). Several studies indicate that
plant aboveground net primary production (ANPP) has vari-
able responses to warming in arctic and alpine regions, with
reported increases, decreases, or no change (Houborg and
Soegaard 2004; Wan et al. 2005; Klein et al. 2007; Post and
Pedersen 2008). Wania et al. (2009) modeled strong increases
in Arctic annual NPP using a dynamic global vegetation
model (DGVM). In their case, the NPP trend was also related
to strong sensitivity to changes in air temperature. Similarly,
through a controlled asymmetrical warming (1.2/1.78C during
daytime/nighttime) experiment from 2006 to 2010 in an alpine
meadow, Wang et al. (2012) found that warming stimulated
ANPP and significantly increased the coverage and height of a
dominant species and graminoid coverage in the community
increased, and these changes explained 32 % and 18 % of the
variation in annual ANPP during the 5-year experimental
periods. Furthermore, a meta-analysis of 20 warming experi-
ments demonstrated an average of 19 % increase in above-
ground plant productivity under warming in comparison to
that under control (Rustad et al. 2001).

In addition to GPP, ecosystem respiration was also affected
by warming (Hao et al. 2013). The balance of these two major
carbon fluxes determines whether terrestrial ecosystems will
act as a net C sink or source under climate changes (Kang et al.
2011). In this study, however, we only focused on the effects
of warming on wetland productivity. So, future studies on the
C balance of the Zoige wetland should integrating continuous
EC measurement data and RS data over longer time periods
with ecological model to evaluate whether warming will

increase C emissions and if increased emission will exceed
the increased amount of C uptake.

Model Uncertainty

We showed that there was good agreement between observed
(GPPobs) and simulated (GPPsim) values of gross primary
production for the photosynthetically active period during
2008–2009 in the targeted wetland. However, there were
some differences between GPPsim and GPPobs, such as lower
GPPsim in late July and early August in 2008, and higher
GPPsim in late August in 2009. Discrepancies between GPPobs
and GPPsim may be attributed to three sources of errors. The
first source is the sensitivity of the VPM model to PAR and
precipitation. In some cases, under/over-estimation of GPP is
attributed to lower/higher input PAR values for the assumed
linear relationship between GPP and PAR in VPM model
(Zhang et al. 2009). For further applications of the VPM
model at large spatial scales, PAR is the most critical variable
in the estimation of the seasonal dynamics of GPPsim, but it
varies substantially over space and time (Xiao et al. 2004b).
Therefore, improvement in measurement of PAR (both direct
and diffusive) at large spatial scales would substantially ben-
efit the VPM model and other models that estimate GPP of
terrestrial ecosystems. The second source is the systematic
error of tower-based GPPobs. The value of GPPobs is calculat-
ed as the difference between Re (observed nighttime NEE and
estimated daytime ecosystem respiration) and flux-measured
NEE. For a given value of NEE as measured by the EC
method, an error in the estimation of daytime ecosystem
respiration would therefore result in an error in the estimation
of GPP. Both of these steps require subjective decisions and
are currently the subject of a great deal of discussion (Falge
et al. 2001, 2002). The third source is the time-series data of
vegetation indices derived from satellite images. We used the
8-day MODIS composite images that have no correction or
normalization, and thus the effect of angular geometry on
surface reflectance and vegetation indices remained.We there-
fore suggest that future work should focus on measurements
of leaf water content, chlorophyll and dry matter during every
key phenological transition stage, by that improving our un-
derstanding of temporal processes of vegetation indices dy-
namics (e.g., EVI and LSWI) and in-depth studies on model
improvement.

Conclusion

In summary, we demonstrated that temperature was the most
important factors controlling CO2 fluxes in the Zoige alpine
wetland ecosystem. Then, we incorporated MODIS EVI and
LSWI as well as in situ measurements of climate data into a
satellite-based vegetation photosynthesis model to more
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adequately quantify ecosystem carbon dynamics. We further
tested the model results against GPP datasets measured at the
study site. These results indicated that the seasonal dynamics
of GPP predicted by the VPM model matched well with
observed GPP from eddy flux towers. Satisfied with the
validation tests, especially regarding the responses of the
modeled GPP fluxes to the climate variation, we will continue
validating and developing the modeling approach to explore
the potential of the VPM model in alpine wetlands. With
further validation and development, the VPM will have the
potential to be applied at large spatial scales to estimate GPP
in the near future, which will improve our understanding of
the carbon cycle of the terrestrial biosphere.
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