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C1l,; time

C2: incoming short-wave (W/m2)

C3, net radiation (W/m2)

C4, air temperature (0C)

C5, VPD (Pascal), or relative humidity
C6, windspeed ( m/s)

C7, obs latent heat (W/m2)

C8, obs sensible heat (W/m2)
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 Why modelling?
—Models as a set of hypothesis
—Models as a synthesis tool

— Interactions between modelling and
measurements



Use of surface flux models for interpreting eddy
flux measurements: some basic principles

Absorbed radiation drives surface processes
Conservation of mass and energy
Energy partitioning: demand and supply

Stomatal functioning



* Energy partitioning: R =AE + H + G

Bowenratio : S = —
p AE




CBM (CSIRO Biosphere Model) simulates
exchange of heat, water and CO2 between land
surface and atmosphere

Key processes:

* Radiative transfer
Leaf energy balance
Stomatal conductance - two - leaf canopy model
Leaf photosynthesis model
Plant and soll respiration
* heat, water transfer in soil and snow




The general structure of CBM

Atmospheric forcings

Canopy
radiation;
sunlit & shaded ,’(’
visible &
near infra-red,
albedo

2-leaf
canopy

SOUEMPIN [soil moisture ] 'snow . Soil+snow
carbon pools; allocation & flow  pcc




* Why two-leaf approach?
— Multi-layered canopy requires more
computing
— One-leaf approach Is inaccurate
 Essence of two-leaf canopy

— Bulk parameter formulation for sunlit and
shaded leaves separately

— Same equations for single leaf is used for big
leaf



Solar radiation and Its spectra
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» The energy unit for radiation is Joule m=2 s,
or Watt m;

e For photosynthesis, it is not the energy, but
number of photos important for the
photosystems Iin a leaf

 The amount of energy per photo decreases
with an increase in wavelength. On average

1 W m=2=4.6umol m2s-1for visible



* Three radiation wavebands of solar
radiation (or shortwave radiation):

e Solar radiation (short-wave radiation)
— Ultraviolet (0.2 to 0.4 um); 5-8%
— Visible (0.4 to 0.7 um), 46-50%
— Near infrared (0.7 to 1.5 um) 44-46%

e Long-wave radiation >10 ( um)



L eaf optical properties

Leaf spectra
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Fig. 6.5 Idealized relation between the reflectivity, transmissivity and absorptivity of

a green leaf.




Surface radiation balance
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Fig. 4.12 Radiation balance at Bergen, Norway (60°N, 5°E): (a) on 13 April 1968,
(b) on 11 January 1968. The grey area shows the net long wave loss and the line R, is
net radiation. Note that net radiation was calculated from measured fluxes of incoming
short and long wave radiation, assuming that the reflectivity of the surface was 0.20in
April (e.g. vegetation) and 0.70 in January (e.g. snow). The radiative temperaturé of
the surface was assumed equal to the measured air temperature.




—_— |

I—l = exp(—alc) = exp(—kL)
0

Where
a: is absorption coefficient;
—7' |: path length;
1

c: concentration of absorbant:;

k: extinction coefficient;

L: canopy leaf area index.




Fig. 5.1 Area A projected on surface at right angles to solar beam (A,) and on
horizontal surface (A,,).




Leaf angle Ky,
distribution

Horizontal leaves k=1
Vertical leaves k,=2cotf/n
Spherical leaves k,=1/(2sinp)

Ellipsoidal leaves

k,=(x?+cot?B)°->/(A(X)x)
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* Fraction of sunlit leaf area, f , IS equal to gap
fraction, exp(-k,L).

* For a canopy, total sunlit leaf area index, L., IS
given by

I—sun — ‘l‘:exp(_kbg)dg — (1_ exp(_kbl‘)/ L



The two-stream approximation
(Goudriaan’s model)

|
I
l
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Two-stream approximation
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Analytic solution to two-stream approximation
suggests:

 the flux density of (unintercepted and scattered)

diffuse radiation decreases exponentially with

the exponent being , Where £is cukrél@ative

canopy LAI from the canopy top, and

ki =k,v1-w.




Radiation absorbed by the shaded leaves,q., ..

G hade — g#kd (1 o -I'{j_a,- )Exp(_ﬁ'ﬁ. ';:)

Absorbed n‘r'_ﬂ"me' radiation

41, Lk (1= ) exp(—¢ &) — ¢, (1- @) exp(—, &)

absorbed scattered nT;! rect beam radiation

Radiation absorbed by the sunlit leaves, ¢

sun "

g.’.hﬂ = '?;.ilm'e + ‘rbkb (1 o E}J



All sunlit leaves, Q

sun

Qun = | eXP(K,E) 0 (£)dE

All shaded leaves,Q

shade

Qshade — j (1 - exp(_kbé:) )qshade (é:)d é: '
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Fig. 5.1. Energy exchanges for a leaf, where the radiative heat loss Ry, s the
difference between actual net radiation and isothermal net radiation.




e The governing equation:
R =4AE; + H;

e Sensible heat:
H; = Cppa(Tf -T,)9,

e Latent heat (Penman-Monteith equation):

SRyt i T DiCp0.9,

S+7/gh

Y

JE, =




Reference
Height

g, =9, +(05/g,)"
g, =9, +(.075g,)" +g,"

0 c_l — (1 57 J )_1 + (1 27 d, )_1 +0 a_l e




Table 5.1. Temperature dependence of the ‘radiative’ conductance g, and
some typical values of the total thermal conductance (gyy) for a range of
values of g,,. The value in brackets is g,; as a percentage of gyx

Zun (MM s™t)

200 (mm s™)

Temperature (°C) g, (mms™) gy =2 20

0 3.54 5.5(36) 23.5 (8S) 204 (98)
10 4.10 6.1(33) 24.1 (83) 204 (98)
20 4.69 6.7 (30) 24.7 (81) 205 (98)
30 5.37 7.4 (27) 25.4(79) 205 (97)
40 6.10 8.1(25) 26.1 (77) 206 (97)
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Fig. 6.6. Maximum leaf conductance (g,,,) in different groups of plants. The
lines cover about 90 % of individual values reported. The open circles represent
group average conductances. (Adapted from Kaérner er al. 1979).




Stomatal conductance: coupling
water use and CO, uptake

« Through stomata, CO, enters and H,O exits the leaf;

— When [CO,] in intercellular space and guard cell v ,K*
moves into guard cell- stomata opens, vice versa;

— Too much water loss, stomata close;

— Soil dries, ABA produced at root tips transported to
leaf, and induce stomata closure.

The Ball - Berry - Leuning model

af A
(C.-T(1+D,/D,)

gs:g0+



Leaf photosynthesis: the Calvin cycle

CALVIN CYCLE

2 3-Phospho
glycerate (PGA)

Ribulose
bisphosphate (RUBP)

2 1,3 bisphosphoglyceric
acid (DPGA)

Ribulose 5
monophosphate

"'/ ; 2 3-phosphoglycer-
GLUCOSE aldehyde (PGAL)




C; photosynthesis model

c,C | P

Rubisco limited RuBP-limited sink—limited

A=min V.. , V.. , V }1— I - R

o day respiration
\ Photorespiration loss /

Rubisco-limited Light-limited Sink-limited

V, G _r
Vc,c = van IO VC j = i CI F ” V _ chax
Ci+KC(1+%<) 17 4c+2r e =




The combined model of stomatal conductance,
photosynthesis and transpiration for a leaf

Hi =c,p.(T; —T,)9;; unknowns: T, ,H,
AE, =(sR,, + D,c,0,0, )/(s+ 9,19, ) unknows: E, g,

R,=H;+AE; +¢ p,(T; - T,)9,; unknows:H. E. T,

We have four unknowns with
only three equations?




The combined model of stomatal conductance,
photosynthesis and transpiration for a leaf

A =(C,-C,)a,.; unkonws : A ,C,

A =(C,-C.)g..; unknowns: A ,C.,C.,g.

A =V_(C.,Qpus, T;)— 1 ; unknows, A V.

We have four unknowns, only three equations?




The combined model of stomatal conductance,
photosynthesis and transpiration for a leaf

af A
_ .+ w ; unknowns: g, A ,C,, D,
= (C,~T)(+D,/D,) 9:
D, =D, +s(T, - T.); unknows : D, T,

The extra equation forms a link between energy
flux and CO, exchange. These equations are the
core of the combined model




Scaling conductance of leaf to big leaf

Table 1
Formulation of the parameters Tor the two big-leal model™

Goi.i = gorl0)L;
Ghu. 1 = Gou{0)F{0.5ky + ky |

Gu.z = gbul 0 {05k, ) — W{0.5ky + kp )]
_ AT kg [ o expl kL) — expl kL)
Gey = |y + ky) ¢ ot P o

o 'y )
i AT kg = o . expl —kgL) — expl kil
Gr s = [T—! l"‘i U {ky + ky) — =

{ ']1 ] Kk N ]

*The total conductances for CO», H-O and heat.G. ; and Gy, ; are calculated as

e G (beGo) T (G Gl) !

1 —1 -] 1

Tw.i Ta,i Thi UM
—]1 — | / . N—
(Ih,.‘ (JLL il l-.”hhll(fh_.-' )
and (;?f.f (""Iw‘ il (;F_-‘"‘."

where by.. b, and by, are constants required o convert conductances Tor water vapour o those for CO, and heat and where n =1 for

amphistomatous leaves and n =2 for hypostomatous ones. For other parameters of the big leaves, see Appendix C.




The combined model of stomatal conductance,
photosynthesis and transpiration for a leaf

Hi =c,0.,(T; —=T,)0,; unknowns: T, ,H,
AE, =(sR,; + D,c,0,0, )/(s+ 9,19, ) unknows: E, g,

R,=H:;+AE; +Cc p,(T; -T,)9,; unknows:H, E, T,
af, A
=0, + - unknowns: g, A ,C,, D,
=8 E ~T)(1+D,/D,) % A
D, =D, +s(T, -T,); unknows : D, T,

A =(C,-C,)q,.; unkonws : A ,C.
A =(C,-C.)g..; unknowns: A ,C.,C., d.

Ah :Vc(Ci ’QPAR’Tf ) — Iy, unknows, A],VC



Respiration: plants

Plant respiration includes growth and
maintenance respiration (R,=R, + R,))

— Growth respiration (R,): about 30% of the total carbon
for growth is respired,;

— Maintenance respiration (R,,): a function of substrate
concentration and temperature.

R = R exp(kT)
ek=a-bT



Respiration: soll

* Soll respiration, R, can be modelled as
Ry = Ry 1,(T5) 15(v;)
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Soll temperature and moisture

(1{ 8—Tj for temperature

(K %j — Sink + Source for moisture
Z



Soll temperature

When thermal conductivity, «, Is constant, and
T(0,t)=T + A(0)sin «t
Solution to the soil temperature equation

T(z,t) =T + A(0)exp(—z/ D)sin(at — z/ D)
and

D= |~
0,



Soll temperature profile
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Fig. 13.5 Diurnal change of soil temperature measured below a bare soil surface and
below potatoes (from van Eimern, 1964).



Soll evaporation

Two-staged processes

=
N

Stage | :Energy-limited

=
o

o
0

Stage Il soil-limited

o o
N B~

o
o

Soil evaporation/potential rate
o
(@)}

10 20 30 40
Time (days)

o



Modell

E. = min

INng soll evaporation

( )
RS  6.Ah

P28 Gk 18
\ demand energy—limited SOl supply )




The general structure of CBM

Atmospheric forcings

Canopy
radiation;
sunlit & shaded ,’(’
visible &
near infra-red,
albedo

2-leaf
canopy

SOUEMPIN [soil moisture ] 'snow . Soil+snow
carbon pools; allocation & flow  pcc




How is it iImplemented?
Table 2

Structure ol the coupled, two-leal model

Set all physical, physiological constants
Fead in location and plant species-dependent parameters
Fead in meteorological data (do loop)
Imnalise some vanables
Calculate radiation absorbed under 1sothermal conditions
Calculate parameters ol the two big leaves
Solve the coupled model (iteranon loop for two g leaves)
End ol iteratnon loop
Calculate A, ;. G, ;. AE. ;. H.
Output results
End do loop



Some basic concept

L Inear inversion

Nonlinear inversion

Practicals



What is it? You often do it without knowing It.
Many commercial packages available
Know your measurements well before inversion

Often requires a few trials and errors to get the
right answer



 Parameters (p), variables (x, y) and state

« Models (y=f(x,p))

e Errors: systematic errors and random
errors (&)



Some basic concept

 Maximum likelihood
— The most probable solution

e | east squares

— Represent the squared difference, may not be
the maximum likelihood solution

e Sensitivity (derivatives)
— Important for any nonlinear optimization



When 1s max likelihood solution Is
the same as least square solution?

 When the errors of individual data points are
normally distributed and independent.

| "j._f,' C— o A
P | I § exXp | — ——— Ay
X £X] - ‘. 4

i—1 L i - T 4

b | =

o Often chi-square is a better distribution for
assessing the goodness of fit.



Some basic concepts

e Estimate and probability distribution

4

P2 80% confidence

Parameter P1



Variance and covariance

var(P) =o’; var(R,)=o;

var(P, + P,) = o7 + 0} +2p,,0,0,
Therefore

0, =0 var(P,+P,)=var(P,)+ var(P,)
0, <0 var(P, +P,)<var(R,)+var(PR,)



General linear regression

( \( S
[y, Xu X A X, b, &1
Y> _ Xg Xpo A X b, N &7
M M M M M M M
\ghn/ Yg Jazp 84 Jn | B f
dependent variable independent variables parameter error
nby 1 \ nby m ) mbyl / \ nbyl

In matrix form
Y=Y+e=Xb+e¢



Linear inversion theory

For a given set of measurements of (X,
Y,), the maximum likelihood estimate of
coefficient b is given by

b= (X7 X,) XY,
The covariance of b (cov(b)) is given by

cov(b) = o2(X{ X, )"



An example

Y: dependent variable; x, and x, are two
Independent variables. The five set of
observations are: (X4, X, Y;)

Y1 I Xy Xy €
Y, 1 Xy Xy [0y €,
Yo [=|1 Xz X || By |+ &
Y4 1 Xy Xy (B €4
Ys 1 X5 Xy €

y=y+e=b,+bx +hbx, +¢&



The covariance matrix : cov(b) = o (XJ XO)_1

2
Oy 0y01 0,0,

cov(b)=| 0,0, o o0,

0,0, 0,0, O,

\
~
[HEN
X
[EEN

(1 1 1 1 1)\1

=0 || X1 X X3 Xy X

B><

X
~

K1 Xz Xz Ky Xp5)

X
w
X X X X X
N
w

/
e
e i
X
(6]



Nonlinear inverse theory

Assume a general nonlinear relationship
between Y and X with parameter p, and
we wish to estimate parameter p from a
set of observations of (X,, Y).

The regression model can be written as

Y=Y +e=F(X,p)+¢



Nonlinear inverse theory

 The least squared cost, @, is given
¢ — Z(Yobs B F(X’ p)p(Yobs B F(X’ p))T

*The optimum is found when

@%p:()



Nonlinear inverse theory

Using the least square theory, the estimate
of parameter p, p.., Can be calculated as

. =(373)137(Y,,, - )

and the covariance of p Is given by

cov(p,)=o°(J'J)™"



What does it mean?

e Linear:
cov(b,.) = 5% (XJQX, )"
e Nonlinear:

coV(p,) =0°(3'QJ)™

« Solution to nonlinear problem is an tangent
linear approximation



Nonlinear parameter estimation
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Case study: Penman-Monteith equation

SR, + D,C,0.9,

f
iy %

Ow

* The equation: 1E

* Independent variables: T, D, R,,
* Dependent variable: E;
 Parameters, 9., 9,,, 9

gh_l = ga_l T (0-5/ gb)
g, =0, +(.0759,) +g,"
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Measured LE

7\‘Emod_7\‘|Eobs

Examining the results

140
120 -
100 -
80 - b[0] 4.7356725207
60 - b[1] 0.9390366543
40 - r2 0.9390448076
20 - - - - -
20 40 60 80 100 120 140
15
10 - . ° o * % b[0] -6.6226134061e-4
5 - o ® o . ® . o o DI1] 86826975776e-6
0 N co—tg—g . s r2 1.16/13882196e-9
-5 - ot .
-10 A e . e e o °
15 . . . . .
20 40 60 80 100 120 140
LE



Examining results (case 41)

b[0] 53.9055001174
b[1] 0.4990900399
r2 0.9836812757

0 50 100 150 200

b[0] -104.7097903421
b[1] 0.9709495223
r2 0.9360158089

ME g ME e Measured LE

40 60 80 100 120 140 160
Predicted LE

b[0] -39.6643886185
] b[1] 0.2340851113
80 ‘ _r2 0.936015§089

-100 0 100 . 200 300 400
Net available energy

}\‘Emod_KEobs




Examining the results (case 4)

200
150 - b[0]=-12.34
2 1g8 1 b[1]=1.12
LL 1 °=
= 0 - r2=0.87
_50 _
-100 - - - -
P 850 0 50 100 150 200
S 601 °
w40 -
< 28 i b[0]=-12.34
é %8 - b[1]=0.12
W -60 - r2=0.07
< -80

-50 0 50 100 150 200
Predicted LE



Radiation absorbed in a canopy
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Introduction to PEST

« PEST Is model-independent, nonlinear
parameter estimation package. It is a widely
used, free download software.

|t provides stable solution to most nonlinear
iInversion problems, with the capability of
powerful predictive analysis and regularization.

* |t communicates to users and models by text
files that can be modified by users



How PEST works?

E Template file

Parameter value

\7

Model Control file

— (running PEST)

Model output

Instruction file




pct

* control data

RETFLE PESTMCDE

NPAR NOBS NPARGP NPRIOR NOBSGP

NTPLFLE NINSFLE PRECIS DPOINT NUMCOM JACFILE MESSFILE

RLAMEDA]1l RLAMFAC PHIRATSUF PHIREDLAM NUMLAM

EELPARMAX FACPAREMAX FACORIG

PHIREDSWH

NOPTMAXY PHIREDSTP NPHISTP NPHINORED RELPARSTP NREELPAR

ICOV ICOR IEIG

* parameter groups

PARGPNME INCTYFP DERINC DERINCLE FORCEN DERINCMUL DERMTHD

{one such line for each of the NPARGP parameter groups)

* parameter data

PARNME PARTRANS PARCHGLIM PARVALl1 PARLEND PARUEBND PARGP SCALE OFFSET DERCOM
{one such line for each of the NPAR parameters)

PARNME PARTIED

{one such line for each tied parameter)

* observation groups

OBGHNME

{one such line for each cbhservation group)

* obsgervation data

OBSHNME OBSVAL WEIGHT OBGNME

{one such line for each of the NOBS obkservations)

* model command line

write the command which PEST must use to run the model

* model input/ocutput

TEMPFLE INFLE

(one such line for each model input file containing parameters)
INSFLE OUTFLE

{one such line for each model output file containing obszervations)
* prior information

PILEL PIFAC * PARNME + PIFAC * log(PARNME) ... = PIVAL WEIGHT OBGNME
{one such line for each of the NPRIOR articles of prior information)




ptf #

#

ratioRL
ratioRL #,#

Template file

resprecl
resprcl

#,#

tempcoefl
tempcoefl

#,#

tempcoef?2
tempcoef?

#




Instruction file

pif #

.1 (AO0OOQOO00001)13:22
L1 (AO0000002)y13:22
L1 (AO0000003)13:22
LL1 (AO0000004)13:22
L1 (AO0000005)13:22
.1 (AO0O000006)13:22
L1 (AO0000007)13:22
LL1 (AO0000008)13:22
L1 (AO0000009)13:22
L1 (A0000010)13:22
.1 (AO0Q000011)13:22
L1 (A0000012)13:22
.1 (AO0O000013)13:22
L1 (A0000014)13:22
LL1 (A0000015)13:22
L1 (A0000016)13:22
L1 (A0000017)Y13:22
.1 (AO0O000018)13:22
L1 (A0000019)13:22
L1 (A0000020)13:22
L1 (A0000021)13:22
L1 (A0000022Y13:22



Application |: interpretation

Response of NPP to CO2 doubling

900
850 -
800 -
750 - \ —e
700 | e !

650

NPP (g C m” year™)
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Years

See Wang, McMurtrie, Medlyn and Pepper (2006)




Ensemble NEP (umol m? s™)
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Application IT: calibration

(a) Bray Y =1.15x -0.93
R2=0.88
ME =0.78

Medlyn et al. 2005



Application lll: predictive analysis

— (ﬂ\\\

P

Allowed
parameter values
P1




Model as a set of hypotheses

Description _—— Observation

|

Mechanisms

|

Models " Predictions




Land surface modeling

 As a key component of earth system

e Synthesis leads to a better representation
of ecological processes

e Use data to test the model

— Discrepancies lead to improvement, new
discoveries



What are we doing differently from
10 years ago?

 More measurements with greater temporal
and spatial resolution

 More synthesis and generalization

e Uncertainties in model and observations



Model-data fusion

* A technique being applied in physical
sciences since 1960’s, and will become a
standard tool within the next decade or so;

A platform to facilitate the interactions
between modelling and observations

o Synthesis of information of different scales



Future

 Model data fusion as a power data
synthesis tool

 Emergence of global change biology and
earth system sciences

 Reducing uncertainties



