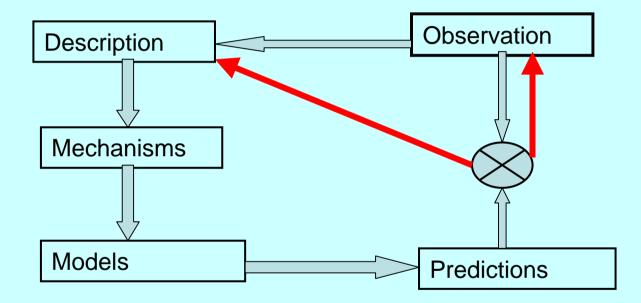
Introduction to CSIRO Biosphere Model (CBM)

Yingping Wang and Ray Leuning CSIRO Marine and Atmospheric Research, Australia

- C1; time
- C2: incoming short-wave (W/m2)
- C3, net radiation (W/m2)
- C4, air temperature (oC)
- C5, VPD (Pascal), or relative humidity
- C6, windspeed (m/s)
- C7, obs latent heat (W/m2)
- C8, obs sensible heat (W/m2)

Model as a set of hypotheses



Modelling

• Why modelling?

-Models as a set of hypothesis

-Models as a synthesis tool

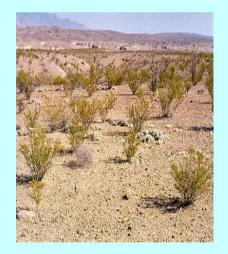
Interactions between modelling and measurements

Use of surface flux models for interpreting eddy flux measurements: some basic principles

- Absorbed radiation drives surface processes
- Conservation of mass and energy
- Energy partitioning: demand and supply
- Stomatal functioning

Energy partitioning: the demand and supply

• Energy partitioning: $R_n = \lambda E + H + G$ **Bowen ratio**: $\beta = \frac{H}{\lambda E}$



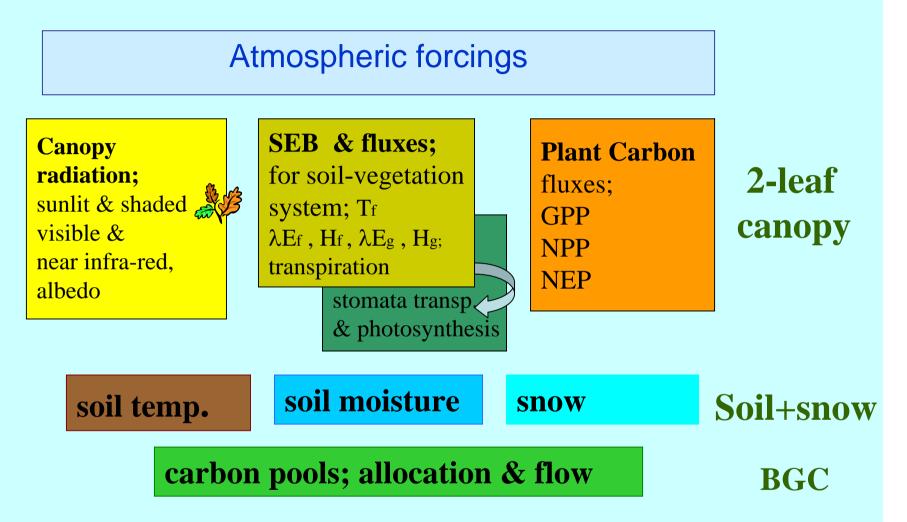
β**=10**

Overview of CBM

- CBM (CSIRO Biosphere Model) simulates exchange of heat, water and CO2 between land surface and atmosphere
- Key processes:
 - Radiative transfer
 - Leaf energy balance
 - Stomatal conductance
 - Leaf photosynthesis model
 - Plant and soil respiration
 - heat, water transfer in soil and snow

two - leaf canopy model

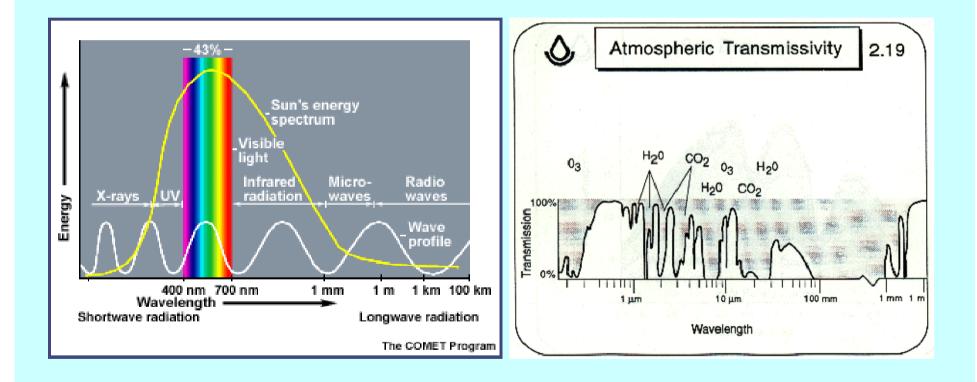
The general structure of CBM



The two-leaf canopy

- Why two-leaf approach?
 - Multi-layered canopy requires more computing
 - One-leaf approach is inaccurate
- Essence of two-leaf canopy
 - Bulk parameter formulation for sunlit and shaded leaves separately
 - Same equations for single leaf is used for big leaf

Solar radiation and its spectra



Radiation flux density

- The energy unit for radiation is Joule m⁻² s⁻¹, or Watt m⁻²;
- For photosynthesis, it is not the energy, but number of photos important for the photosystems in a leaf
- The amount of energy per photo decreases with an increase in wavelength. On average
 1 W m⁻² = 4.6 μmol m⁻² s⁻¹ for visible

Four radiation wavebands

- Three radiation wavebands of solar radiation (or shortwave radiation):
- Solar radiation (short-wave radiation)
 - Ultraviolet (0.2 to 0.4 μ m); 5-8%
 - Visible (0.4 to 0.7 μm), 46-50%
 - Near infra red (0.7 to 1.5 $\mu m)$ 44-46%
- Long-wave radiation >10 (μ m)

Leaf optical properties

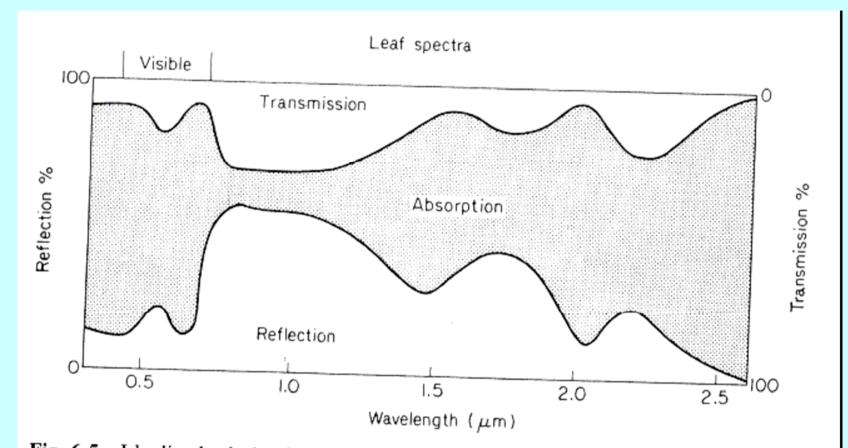


Fig. 6.5 Idealized relation between the reflectivity, transmissivity and absorptivity of a green leaf.

Surface radiation balance

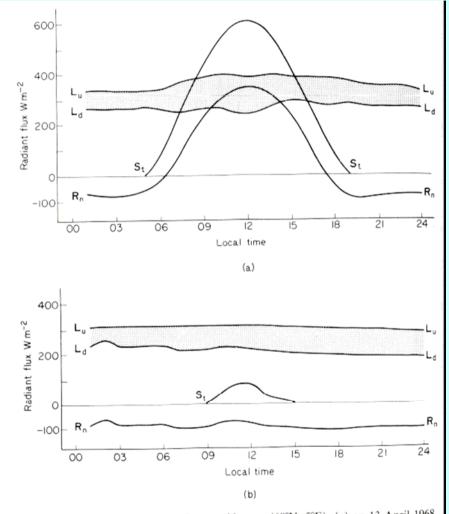
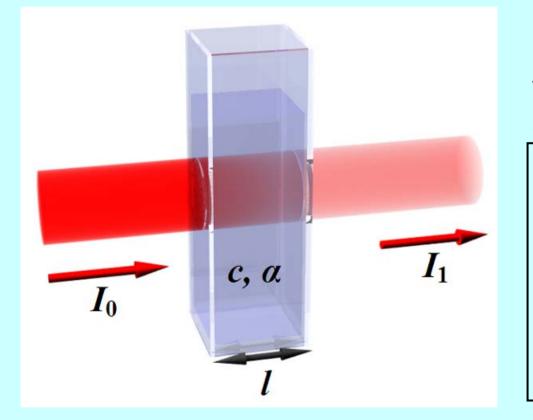


Fig. 4.12 Radiation balance at Bergen, Norway ($60^{\circ}N$, $5^{\circ}E$): (a) on 13 April 1968, (b) on 11 January 1968. The grey area shows the net long wave loss and the line \mathbf{R}_n is net radiation. Note that net radiation was calculated from measured fluxes of incoming short and long wave radiation, assuming that the reflectivity of the surface was 0.20 in April (e.g. vegetation) and 0.70 in January (e.g. snow). The radiative temperature of the surface was assumed equal to the measured air temperature.

Beer's law



$$\frac{I_1}{I_0} = \exp(-alc) = \exp(-kL)$$

Where

- a: is absorption coefficient;
- *I*: path length;
- c: concentration of absorbant;
- k: extinction coefficient;
- L: canopy leaf area index.

Extinction coefficient (k)

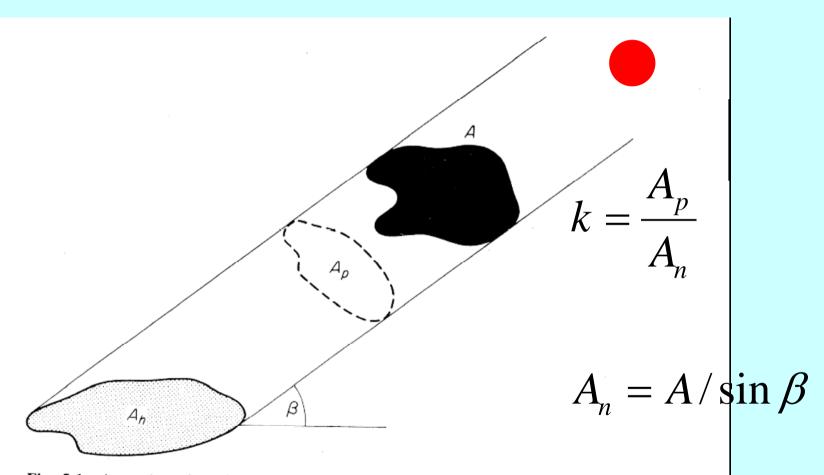
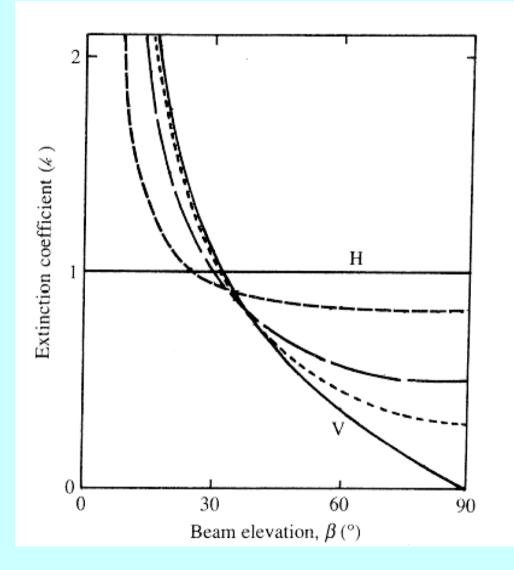


Fig. 5.1 Area A projected on surface at right angles to solar beam (A_p) and on horizontal surface (A_h) .

Leaf angle distribution and $k_{\rm b}$

Leaf angle distribution	k _b
Horizontal leaves	k _b =1
Vertical leaves	$k_{\rm b}=2\cot\beta/\pi$
Spherical leaves	k _b =1/(2sinβ)
Ellipsoidal leaves	$k_b = (x^2 + \cot^2 \beta)^{0.5} / (A(x)x)$

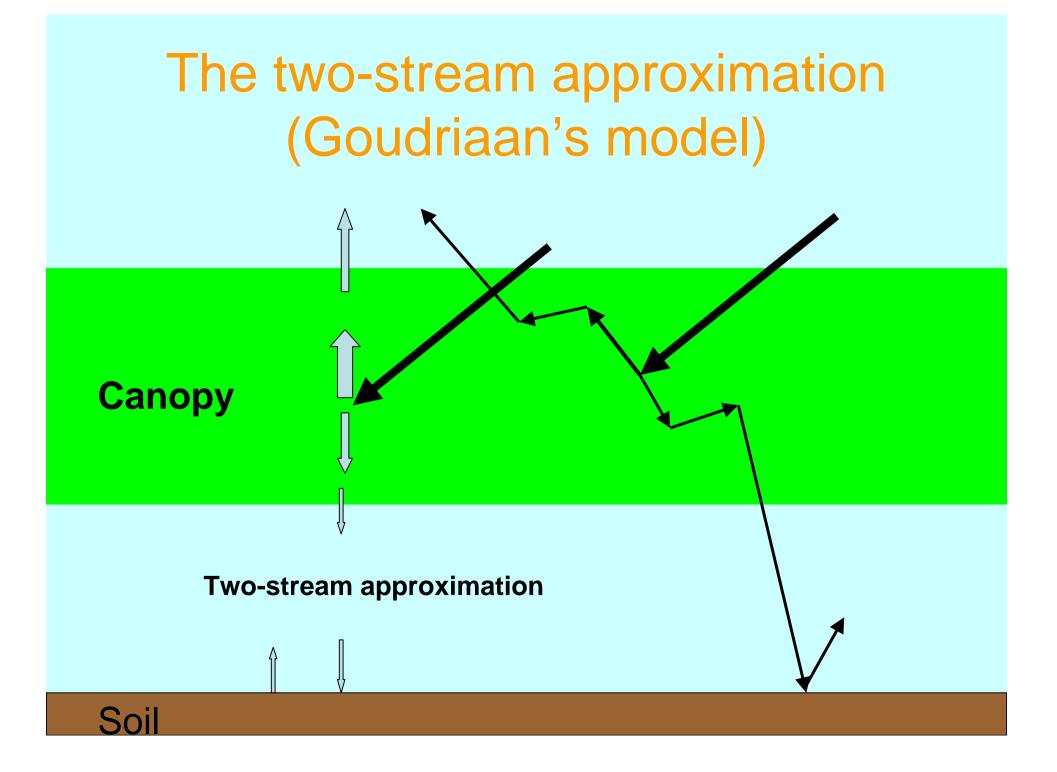
Extinction coefficient for direct beam radiation $(k_{\rm b})$



Sunlit leaf area fraction

- Fraction of sunlit leaf area, f_{sun} is equal to gap fraction, $exp(-k_bL)$.
- For a canopy, total sunlit leaf area index, L_{sun}, is given by

$$L_{sun} = \int_{0}^{L} \exp(-k_{b}\xi) d\xi = (1 - \exp(-k_{b}L)/L$$



Two-stream approximation

Analytic solution to two-stream approximation suggests:

 the flux density of (unintercepted and scattered) diffuse radiation decreases exponentially with the exponent being , where ξ is cum fative canopy LAI from the canopy top, and

$$k_d^* = k_d \sqrt{1 - \omega}.$$

Radiation absorption within a plant canopy

Radiation absorbed by the shaded leaves, q_{shade}

$$q_{shade} = \underbrace{I_d k_d^* (1 - \rho_d) \exp(-k_d^* \xi)}_{Absorbed diffuse radiation} + \underbrace{I_b \left[k_b^* (1 - \rho_b) \exp(-k_b^* \xi) - k_b (1 - \omega) \exp(-k_b \xi)\right]}_{Absorbed diffuse radiation}$$

absorbed scattered direct beam radiation

Radiation absorbed by the sunlit leaves, q_{sun} : $q_{sun} = q_{shade} + I_{b}k_{b}(1-\omega)$

Total amount of radiation absorbed

All sunlit leaves,
$$Q_{sun}$$

$$Q_{sun} = \int_{0}^{L} \exp(-k_b \xi) q_{sun}(\xi) d\xi$$

All shaded leaves, Q_{shade} $Q_{shade} = \int_{0}^{L} (1 - \exp(-k_b \xi)) q_{shade}(\xi) d\xi.$

Leaf energy balance

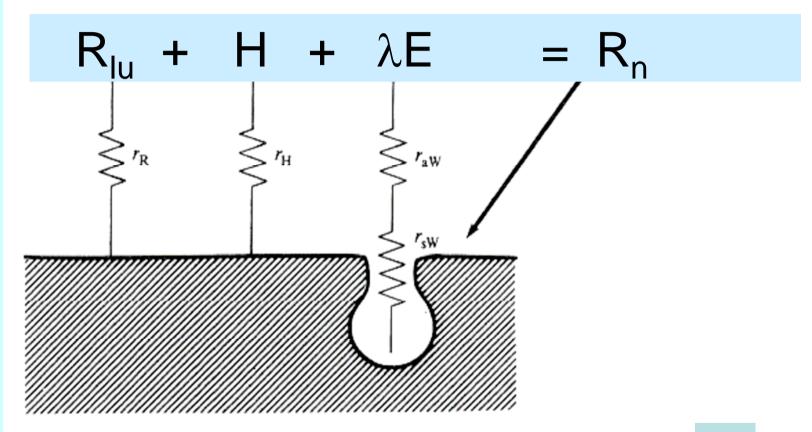


Fig. 5.1. Energy exchanges for a leaf, where the radiative heat loss R_{lu} s the difference between actual net radiation and isothermal net radiation.

Leaf energy balance

• The governing equation:

$$R_{nf} = \lambda E_f + H_f$$

• Sensible heat:

$$H_f = c_p \rho_a (T_f - T_a) g_h$$

• Latent heat (Penman-Monteith equation):

$$\lambda E_{f} = \frac{SR_{nf,i} + D_{a}c_{p}\rho_{a}g_{h}}{S + \gamma \frac{g_{h}}{g_{w}}}$$

Conductance for heat, water and CO₂

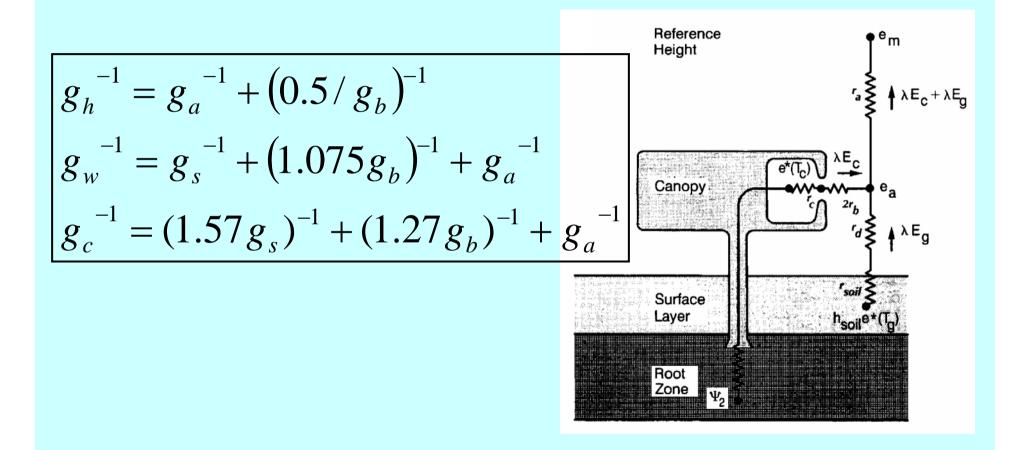


Table 5.1. Temperature dependence of the 'radiative' conductance g_R , and some typical values of the total thermal conductance (g_{HR}) for a range of values of g_H . The value in brackets is g_H as a percentage of g_{HR}

Temperature (°C)	$g_{\rm R} \; ({\rm mm \; s^{-1}})$	$g_{_{\rm HR}} \ ({\rm mm \ s^{-1}})$		
		$g_{\rm H}=2$	20	200 (mm s ⁻¹)
0	3.54	5.5 (36)	23.5 (85)	204 (98)
10	4.10	6.1 (33)	24.1 (83)	204 (98)
20	4.69	6.7 (30)	24.7 (81)	205 (98)
30	5.37	7.4 (27)	25.4 (79)	205 (97)
40	6.10	8.1 (25)	26.1 (77)	206 (97)

Maximum leaf conductance, g_{ℓ} (mmol m ⁻² s ⁻¹)			
100 .200 300 400 500	600		
	Succulents		
	Evergreen conifers		
	Deciduous woody plants		
~	Herbs from shaded habitats		
	Evergreen woody plants		
	Desert- and steppe-shrubs		
	Deciduous fruit trees		
	Wild graminoids		
	Cultivated C ₃ grasses		
o	Cultivated C ₄ grasses		
	Herbaceous crop plants		
	Herbs from open habitats		
	Plants from wet habitats		
0 4 8 12	16		
Maximum leaf conductance,			

Fig. 6.6. Maximum leaf conductance $(g_{\ell W})$ in different groups of plants. The lines cover about 90% of individual values reported. The open circles represent group average conductances. (Adapted from Körner *et al.* 1979).

145

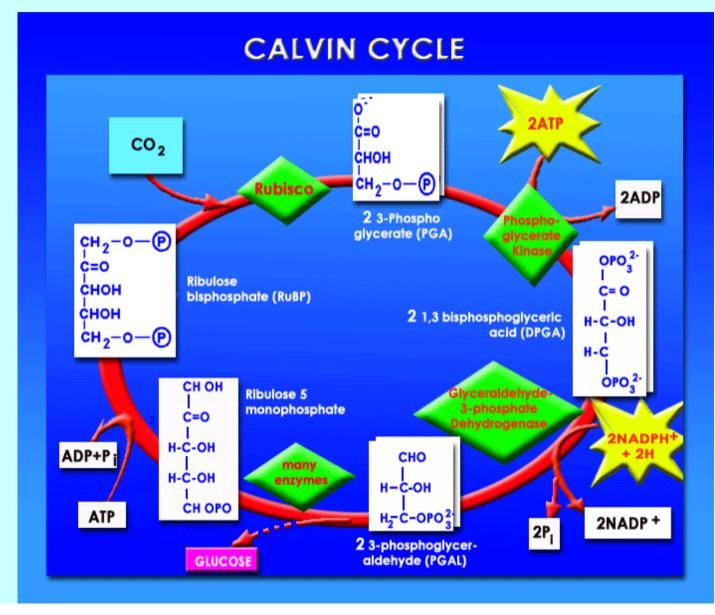
Stomatal conductance: coupling water use and CO₂ uptake

- Through stomata, CO₂ enters and H₂O exits the leaf;
 - When [CO₂] in intercellular space and guard cell \$\,K⁺
 moves into guard cell[,] stomata opens, vice versa;
 - Too much water loss, stomata close;
 - Soil dries, ABA produced at root tips transported to leaf, and induce stomata closure.

The Ball - Berry - Leuning model

$$g_{s} = g_{0} + \frac{af_{w}A_{n}}{(C_{s} - \Gamma)(1 + D_{s} / D_{0})}$$

Leaf photosynthesis: the Calvin cycle



C₃ photosynthesis model

$$A_{n} = \min\left(\underbrace{V_{C,c}}_{Rubisco\ limited\ RuBP-limited\ sink-limited}}, \underbrace{V_{C,j}}_{I-\underset{Photorespiration\ loss}{\Gamma}}\right) - \underbrace{R_{d}}_{day\ respiration\ loss}}$$

Rubisco-limited Light-limited Sink-limited $V_{c,c} = \frac{V_{c\,\text{max}}C_i}{C_i + K_c \left(1 + \frac{O_i}{K_o}\right)} \qquad V_{c,j} = \frac{J}{4} \frac{C_i - \Gamma^*}{C_i + 2\Gamma^*}$ $V_{c,p} = \frac{V_{c\max}}{2}$

$$) \qquad V_{c,j} = \frac{1}{4} \frac{1}{C_i + 2\Gamma^*}$$

$$H_f = c_p \rho_a (T_f - T_a) g_h; \quad unknowns: T_f, H_f$$

$$\lambda E_f = \left(sR_{n,i} + D_a c_p \rho_a g_h \right) / \left(s + \gamma g_h / g_w \right); \ unknows : E_f, g_s$$

 $R_n = H_f + \lambda E_f + c_p \rho_a (T_f - T_a) g_r; \qquad unknows: H_f, E_f, T_f$

We have four unknowns with only three equations?

$$A_n = (C_a - C_s)g_{bc};$$
 unkonws: A_n, C_s

$$A_n = (C_s - C_i)g_{sc};$$
 unknowns: A_n, C_s, C_i, g_s

$$A_n = V_c(C_i, Q_{PAR}, T_f) - r_d$$
; unknows, A_n, V_c

We have four unknowns, only three equations?

$$g_{s} = g_{0} + \frac{af_{w}A_{n}}{(C_{s} - \Gamma)(1 + D_{s} / D_{0})}$$
;

 $unknowns: g_s, A_n, C_s, D_s$

$$D_s = D_a + s(T_f - T_a);$$
 unknows: D_s, T_f

The extra equation forms a link between energy flux and CO_2 exchange. These equations are the core of the combined model

Scaling conductance of leaf to big leaf

Table 1

Formulation of the parameters for the two big-leaf model^a

$$\begin{split} &G_{\mathrm{bf},i} = g_{\mathrm{bf}}(0)L_{i} \\ &G_{\mathrm{bu},1} = g_{\mathrm{bu}}(0)\Psi\{0.5k_{\mathrm{u}} + k_{\mathrm{b}}\} \\ &G_{\mathrm{bu},2} = g_{\mathrm{bu}}(0)[\Psi\{0.5k_{\mathrm{u}}\} - \Psi\{0.5k_{\mathrm{u}} + k_{\mathrm{b}}\}] \\ &G_{\mathrm{r},1} = \left[\frac{4\sigma T_{\mathrm{a}}^{3}k_{\mathrm{d}}\varepsilon_{f}}{c_{\mathrm{p}}}\right] \left[\Psi\{k_{\mathrm{b}} + k_{\mathrm{d}}\} + \frac{\exp(-k_{\mathrm{d}}L) - \exp(-k_{b}L)}{k_{b} - k_{\mathrm{d}}}\right] \\ &G_{\mathrm{r},2} = \left[\frac{4\sigma T_{\mathrm{a}}^{3}k_{\mathrm{d}}\varepsilon_{f}}{c_{\mathrm{p}}}\right] \left[2\Psi\{k_{\mathrm{d}}\} - \Psi\{k_{b} + k_{\mathrm{d}}\} - \frac{\exp(-k_{\mathrm{d}}L) - \exp(-k_{b}L)}{k_{b} - k_{\mathrm{d}}}\right] \end{split}$$

^a The total conductances for CO₂, H₂O and heat, G_{c,i} and G_{h,i} are calculated as

$$G_{c,i}^{-1} = G_{a,i}^{-1} + (b_{bc}G_{b,i})^{-1} + (b_{sc}G_{s,i})^{-1}$$
$$G_{w,i}^{-1} = G_{a,i}^{-1} + G_{b,i}^{-1} + G_{s,i}^{-1}$$
$$G_{h,i}^{-1} = G_{a,i}^{-1} + (nb_{bh}G_{b,i})^{-1}$$
and $G_{b,i} = G_{bu,i} + G_{bf,i}$

where b_{bc} , b_{sc} and b_{bh} are constants required to convert conductances for water vapour to those for CO₂ and heat and where n = 1 for amphistomatous leaves and n = 2 for hypostomatous ones. For other parameters of the big leaves, see Appendix C.

$$H_{f} = c_{p}\rho_{a}(T_{f} - T_{a})g_{h}; \qquad unknowns: T_{f}, H_{f}$$

$$\lambda E_{f} = \left(sR_{n,i} + D_{a}c_{p}\rho_{a}g_{h}\right) / \left(s + \gamma g_{h} / g_{w}\right); unknows: E_{f}, g_{s}$$

$$R_{n} = H_{f} + \lambda E_{f} + c_{p}\rho_{a}(T_{f} - T_{a})g_{r}; \qquad unknows: H_{f}, E_{f}, T_{f}$$

$$g_{s} = g_{0} + \frac{af_{w}A_{n}}{(C_{s} - \Gamma)(1 + D_{s} / D_{0})}; \qquad unknowns: g_{s}, A_{n}, C_{s}, D_{s}$$

$$D_{s} = D_{a} + s(T_{f} - T_{a}); \qquad unknows: D_{s}, T_{f}$$

$$A_{n} = (C_{a} - C_{s})g_{bc}; \qquad unknowns: A_{n}, C_{s}$$

$$A_{n} = (C_{s} - C_{i})g_{sc}; unknowns: A_{n}, C_{s}, C_{i}, g_{s}$$

$$A_{n} = V_{c}(C_{i}, Q_{PAR}, T_{f}) - r_{d}; unknows, A_{n}, V_{c}$$

Respiration: plants

Plant respiration includes growth and maintenance respiration ($R_p = R_q + R_m$)

- Growth respiration (R_g): about 30% of the total carbon for growth is respired;
- Maintenance respiration (R_m): a function of substrate concentration and temperature.

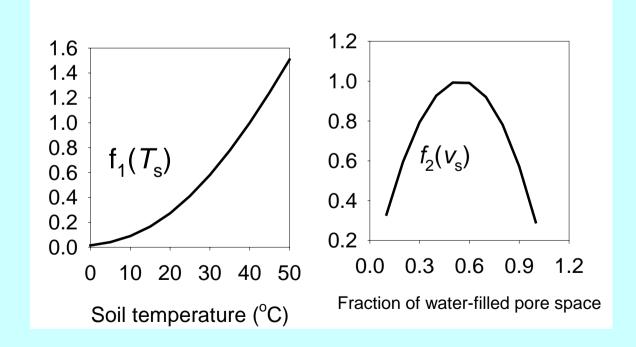
•
$$R_{\rm m} = R_0 \exp(kT)$$

• *k* = *a* - *bT*

Respiration: soil

• Soil respiration, R_s , can be modelled as

 $R_s = R_0 f_1(T_s) f_2(v_s)$



Soil temperature and moisture

$$\frac{\partial T}{\partial t} = \frac{\partial}{\partial} \left(\kappa \frac{\partial T}{\partial z} \right) \quad for \quad temperature$$

$$\frac{\partial \theta}{\partial t} = \frac{\partial}{\partial} \left(K \frac{\partial \theta}{\partial z} \right) - Sink + Source \quad for \quad moisture$$

Soil temperature

When thermal conductivity, κ , is constant, and $T(0,t) = \overline{T} + A(0) \sin \omega t$ Solution to the soil temperature equation

$$T(z,t) = \overline{T} + A(0) \exp(-z/D) \sin(\omega t - z/D)$$

and

$$D = \sqrt{\frac{2\kappa}{\omega}}$$

Soil temperature profile

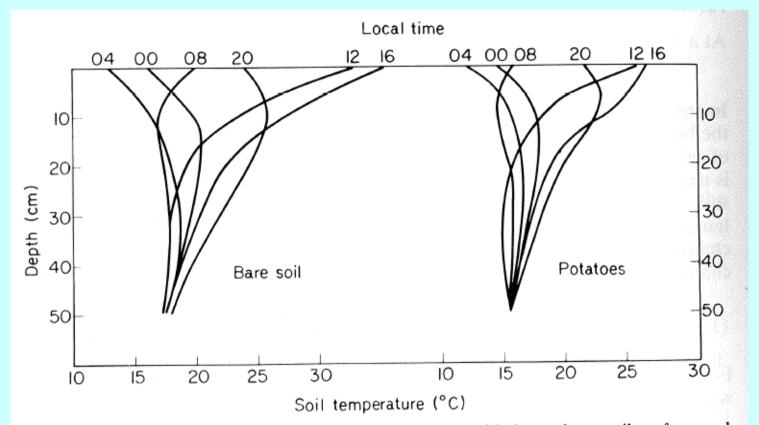
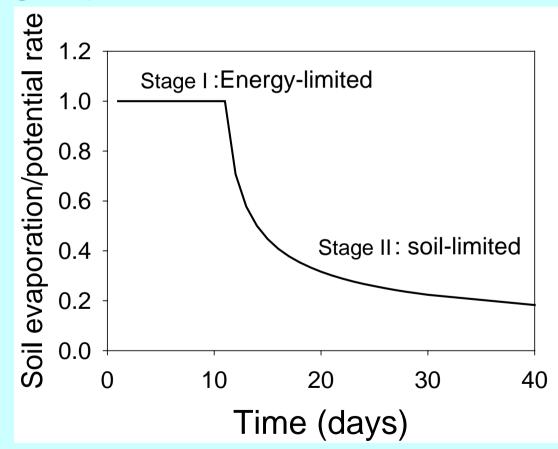


Fig. 13.5 Diurnal change of soil temperature measured below a bare soil surface and below potatoes (from van Eimern, 1964).

Soil evaporation

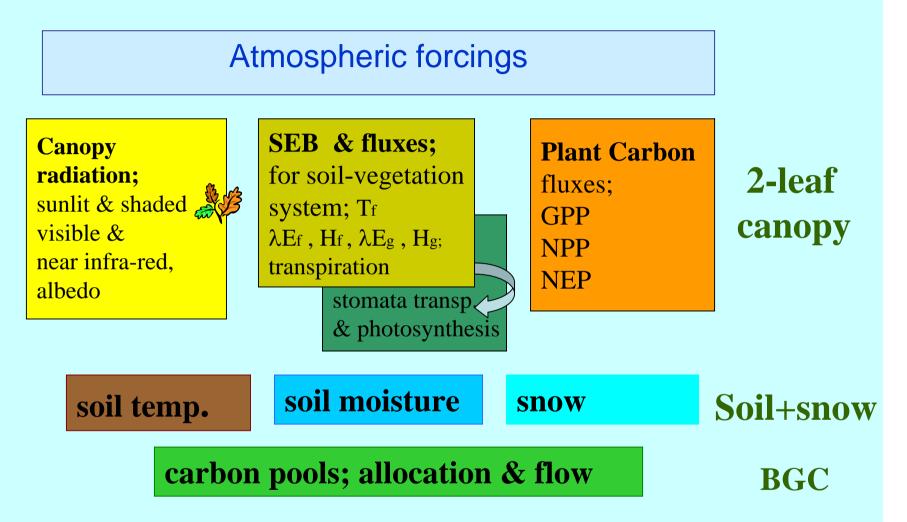
Two-staged processes



Modelling soil evaporation

$$E_{s} = \min \left(\begin{array}{c} \rho_{a} \Delta_{q} g_{a} \\ \Gamma^{a} 2^{q} 3^{a} \\ A \\ atmospheric \\ demand \end{array}, \begin{array}{c} R_{ns} s \\ (s_{4} + 2^{\gamma}) 3^{2} \\ (s_{4} + 2^{\gamma}) 3^{2}$$

The general structure of CBM



How is it implemented?

Table 2 Structure of the coupled, two-leaf model

Set all physical, physiological constants Read in location and plant species-dependent parameters Read in meteorological data (do loop) Initialise some variables Calculate radiation absorbed under isothermal conditions Calculate parameters of the two big leaves Solve the coupled model (iteration loop for two big leaves) End of iteration loop Calculate $A_{c,i}, G_{s,i}, \lambda E_{c,i}, H_{c,i}$ Output results

End do loop

Nonlinear parameter estimation - An introduction

- Some basic concept
- Linear inversion
- Nonlinear inversion
- Practicals

Inversion

- What is it? You often do it without knowing it.
- Many commercial packages available
- Know your measurements well before inversion
- Often requires a few trials and errors to get the right answer

Some basic concept

- Parameters (p), variables (x, y) and state
- Models (*y*=*f*(*x*,*p*))
- Errors: systematic errors and random errors (ε)

Some basic concept

- Maximum likelihood
 - The most probable solution
- Least squares
 - Represent the squared difference, may not be the maximum likelihood solution
- Sensitivity (derivatives)
 - Important for any nonlinear optimization

When is max likelihood solution is the same as least square solution?

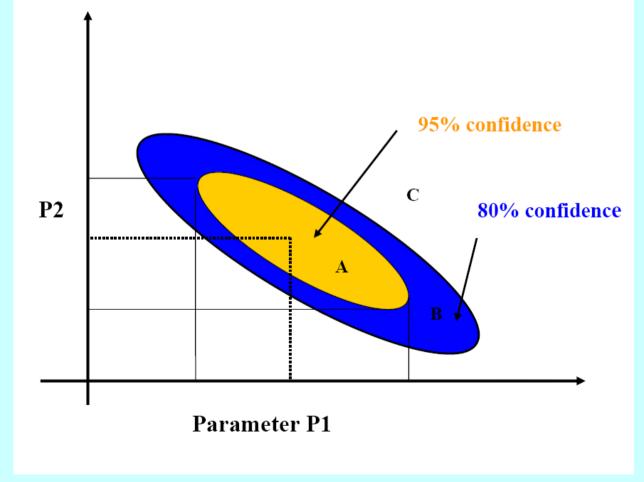
• When the errors of individual data points are normally distributed and independent.

$$P \propto \prod_{i=1}^{N} \left\{ \exp\left[-\frac{1}{2} \left(\frac{y_i - y(x_i)}{\sigma}\right)^2\right] \Delta y \right\}$$

• Often chi-square is a better distribution for assessing the goodness of fit.

Some basic concepts

Estimate and probability distribution



Variance and covariance

 $var(P_{1}) = \sigma_{1}^{2}; \quad var(P_{2}) = \sigma_{2}^{2}$ $var(P_{1} + P_{2}) = \sigma_{1}^{2} + \sigma_{2}^{2} + 2\rho_{12}\sigma_{1}\sigma_{2}$ Therefore $\rho_{12} = 0 \qquad var(P_{1} + P_{2}) = var(P_{1}) + var(P_{2})$ $\rho_{12} < 0 \qquad var(P_{1} + P_{2}) < var(P_{1}) + var(P_{2})$

General linear regression

 $\begin{pmatrix} \mathbf{y}_{1} \\ \mathbf{y}_{2} \\ \mathbf{M} \\ \mathbf{y}_{n} \end{pmatrix} = \begin{pmatrix} x_{11} & x_{12} & \Lambda & x_{1m} \\ x_{21} & x_{22} & \Lambda & x_{2m} \\ \mathbf{M} & \mathbf{M} & \mathbf{M} & \mathbf{M} \\ \mathbf{M} & \mathbf{M} & \mathbf{M} & \mathbf{M} \\ \mathbf{y}_{n} \end{pmatrix} + \begin{pmatrix} \varepsilon_{1} \\ \varepsilon_{2} \\ \mathbf{M} \\ \mathbf$

In matrix form $Y = \hat{Y} + \varepsilon = Xb + \varepsilon$

Linear inversion theory

For a given set of measurements of (X₀, Y₀), the maximum likelihood estimate of coefficient b is given by

$$\boldsymbol{b} = \left(\boldsymbol{X}_{\boldsymbol{\theta}}^{T} \boldsymbol{X}_{\boldsymbol{\theta}}\right)^{-1} \boldsymbol{X}_{\boldsymbol{\theta}}^{T} \boldsymbol{Y}_{\boldsymbol{\theta}}$$

• The covariance of **b** (cov(**b**)) is given by

$$\operatorname{cov}(\boldsymbol{b}) = \sigma^2 \left(\boldsymbol{X}_{\boldsymbol{\theta}}^T \boldsymbol{X}_{\boldsymbol{\theta}} \right)^{-1}$$

An example

Y: dependent variable; x_1 and x_2 are two independent variables. The five set of observations are: (x_{1i}, x_{2i}, y_i)

$$\begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \end{pmatrix} = \begin{pmatrix} 1 & x_{11} & x_{21} \\ 1 & x_{12} & x_{22} \\ 1 & x_{13} & x_{23} \\ 1 & x_{14} & x_{24} \\ 1 & x_{15} & x_{25} \end{pmatrix} \begin{pmatrix} b_0 \\ b_1 \\ b_2 \end{pmatrix} + \begin{pmatrix} e_1 \\ e_2 \\ e_3 \\ e_4 \\ e_5 \end{pmatrix}$$

 $y = \hat{y} + \varepsilon = b_0 + b_1 x_1 + b_2 x_2 + \varepsilon$

The covariance matrix : $\operatorname{cov}(\boldsymbol{b}) = \sigma^2 (\boldsymbol{X}_{\boldsymbol{\theta}}^T \boldsymbol{X}_{\boldsymbol{\theta}})^{-1}$

$$\operatorname{cov}(b) = \begin{pmatrix} \sigma_0^2 & \sigma_0 \sigma_1 & \sigma_0 \sigma_2 \\ \sigma_0 \sigma_1 & \sigma_1^2 & \sigma_1 \sigma_2 \\ \sigma_0 \sigma_2 & \sigma_1 \sigma_2 & \sigma_2^2 \end{pmatrix}$$
$$= \sigma^2 \begin{pmatrix} 1 & 1 & 1 & 1 \\ x_{11} & x_{12} & x_{13} & x_{14} & x_{15} \\ x_{21} & x_{22} & x_{23} & x_{24} & x_{25} \end{pmatrix} \begin{pmatrix} 1 & x_{11} & x_{21} \\ 1 & x_{12} & x_{22} \\ 1 & x_{13} & x_{23} \\ 1 & x_{14} & x_{24} \\ 1 & x_{15} & x_{25} \end{pmatrix} \end{pmatrix}^{-1}$$

Nonlinear inverse theory

- Assume a general nonlinear relationship between Y and X with parameter p, and we wish to estimate parameter p from a set of observations of (X₀, Y₀).
- The regression model can be written as

$$Y = \hat{Y} + \varepsilon = F(X, p) + \varepsilon$$

Nonlinear inverse theory

• The least squared cost, Φ , is given

$$\phi = \sum_{m} (Y_{obs} - F(X, p))Q(Y_{obs} - F(X, p))^{T}$$

•The optimum is found when

$$\partial \phi / \partial p = 0$$

Nonlinear inverse theory

Using the least square theory, the estimate of parameter p, p_{es} , can be calculated as

$$\boldsymbol{p}_{es} = (\boldsymbol{J}^T \boldsymbol{J})^{-1} \boldsymbol{J}^T \left(\boldsymbol{Y}_{obs} - \hat{\boldsymbol{Y}} \right)$$

and the covariance of *p* is given by

$$\operatorname{cov}(\boldsymbol{p}_{es}) = \sigma^2 (\boldsymbol{J}^T \boldsymbol{J})^{-1}$$

What does it mean?

• Linear:

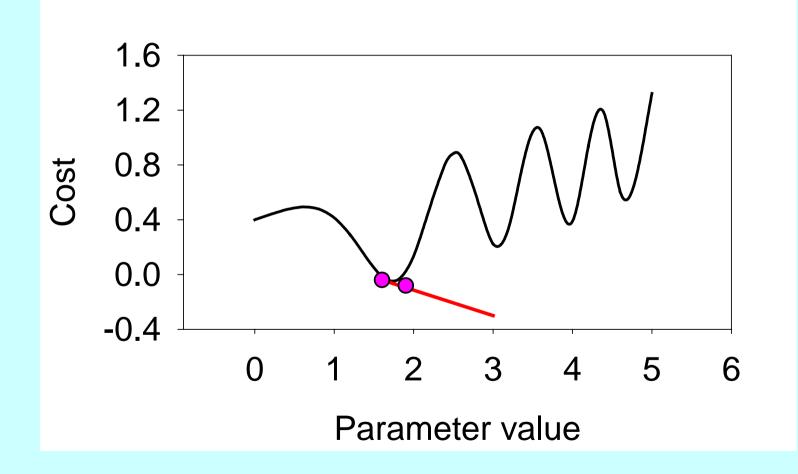
$$\operatorname{cov}(\boldsymbol{b}_{es}) = \sigma^2 \left(\boldsymbol{X}_{\boldsymbol{\theta}}^T \boldsymbol{Q} \boldsymbol{X}_{\boldsymbol{\theta}} \right)^{-1}$$

• Nonlinear:

$$\operatorname{cov}(\boldsymbol{p}_{es}) = \sigma^2 (\boldsymbol{J}^T \boldsymbol{Q} \boldsymbol{J})^{-1}$$

 Solution to nonlinear problem is an tangent linear approximation

Nonlinear parameter estimation

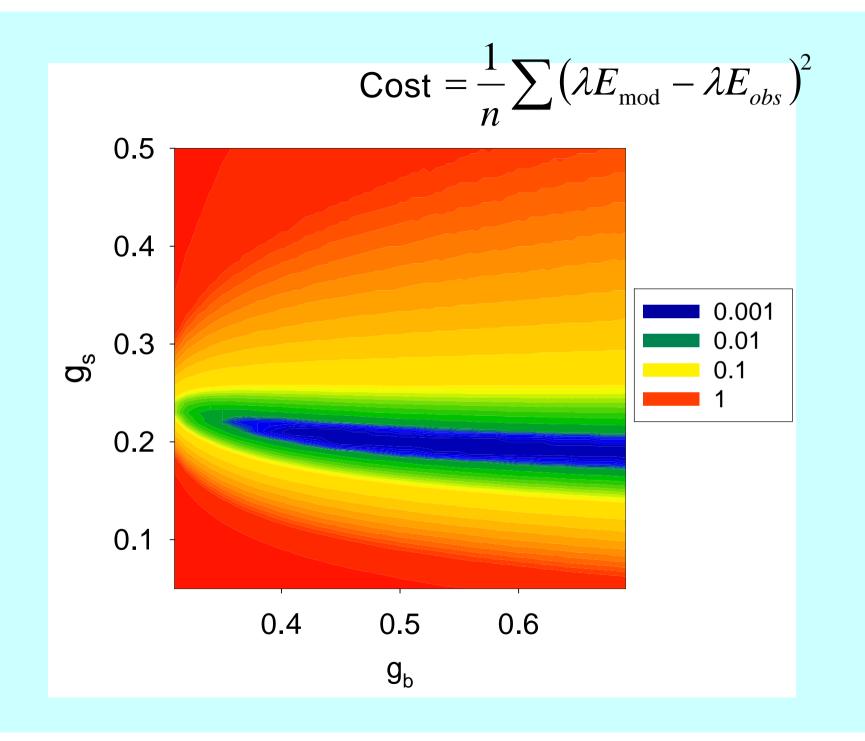


Case study: Penman-Monteith equation

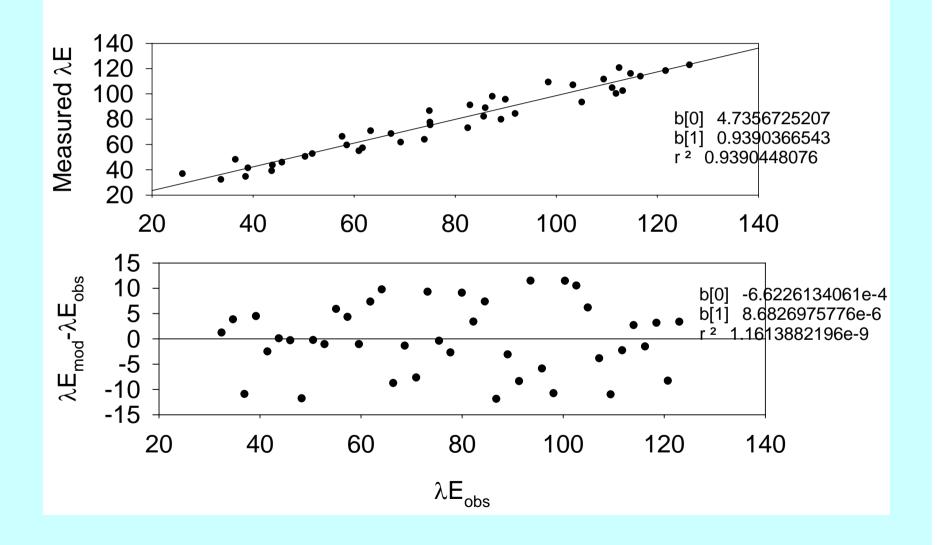
• The equation:

$$\lambda E_{f} = \frac{sR_{n,i} + D_{a}c_{p}\rho_{a}g_{h}}{s + \gamma \frac{g_{h}}{g_{w}}}$$

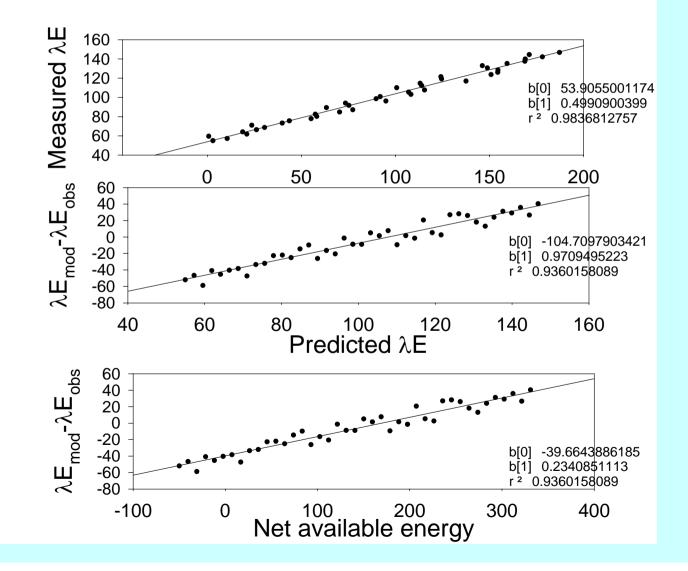
- Independent variables: T_a, D_a, R_{ni}
- Dependent variable: E_f
- Parameters, g_a , g_b , g_s $g_h^{-1} = g_a^{-1} + (0.5/g_b)$ $g_w^{-1} = g_s^{-1} + (1.075g_b)^{-1} + g_a^{-1}$



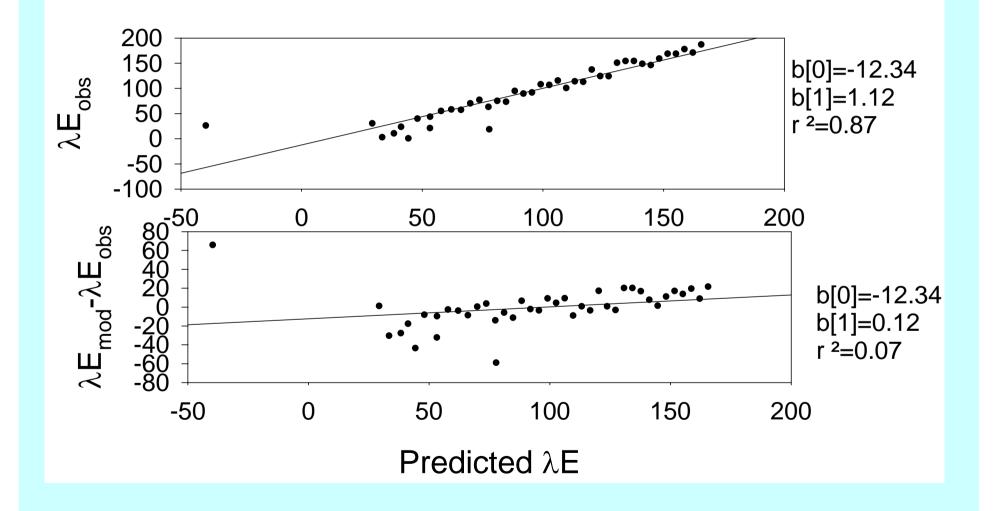
Examining the results



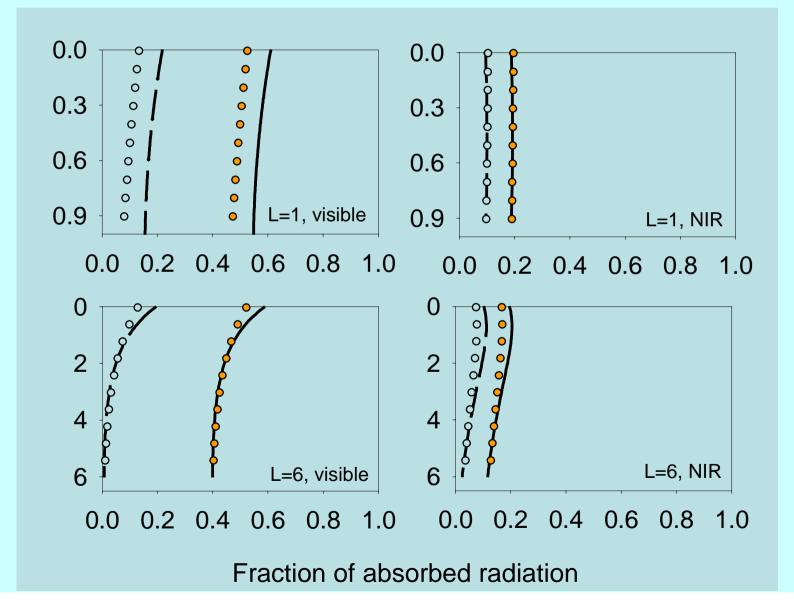
Examining results (case 41)



Examining the results (case 4)



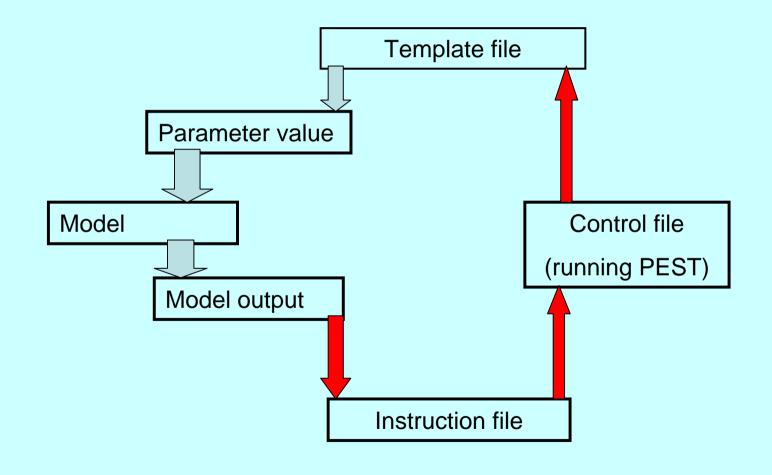
Radiation absorbed in a canopy



Introduction to PEST

- PEST is model-independent, nonlinear parameter estimation package. It is a widely used, free download software.
- It provides stable solution to most nonlinear inversion problems, with the capability of powerful predictive analysis and regularization.
- It communicates to users and models by text files that can be modified by users

How PEST works?



pcf * control data RSTELE PESTMODE NPAR NOBS NPARGP NPRIOR NOBSGP NTPLFLE NINSFLE PRECIS DPOINT NUMCOM JACFILE MESSFILE RLAMBDA1 RLAMFAC PHIRATSUF PHIREDLAM NUMLAM RELPARMAX FACPARMAX FACORIG PHIREDSWH NOPTMAX PHIREDSTP NPHISTP NPHINORED RELPARSTP NRELPAR ICOV ICOR IEIG * parameter groups PARGPNME INCTYP DERINC DERINCLE FORCEN DERINCMUL DERMTHD (one such line for each of the NPARGP parameter groups) * parameter data PARNME PARTRANS PARCHGLIM PARVAL1 PARLBND PARUBND PARGP SCALE OFFSET DERCOM (one such line for each of the NPAR parameters) PARNME PARTIED (one such line for each tied parameter) * observation groups OBGNME (one such line for each observation group) * observation data OBSNME OBSVAL WEIGHT OBGNME (one such line for each of the NOBS observations) * model command line write the command which PEST must use to run the model * model input/output TEMPFLE INFLE (one such line for each model input file containing parameters) INSFLE OUTFLE (one such line for each model output file containing observations) * prior information PILBL PIFAC * PARNME + PIFAC * log(PARNME) ... = PIVAL WEIGHT OBGNME (one such line for each of the NPRIOR articles of prior information)

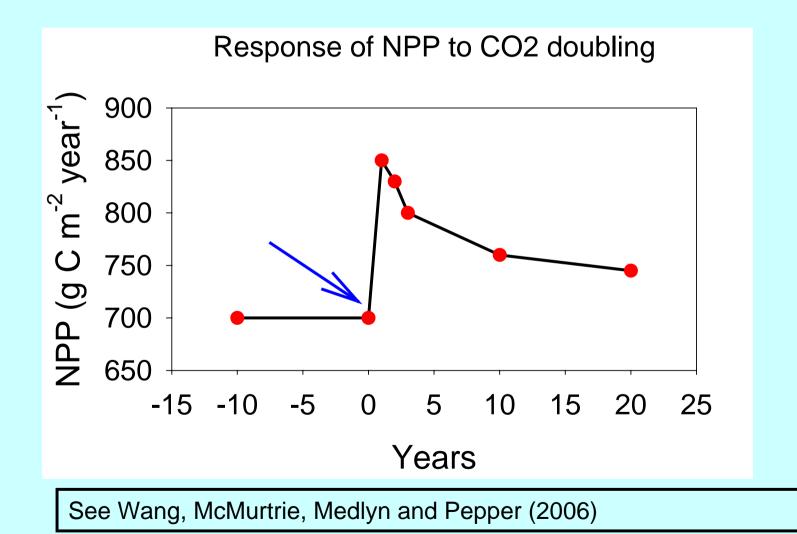
Template file

ptf #	ŧ							
	ratioRL		resprc1		tempcoef1		tempcoef2	
#	ratioRL	#,#	resprc1	#,#	tempcoef1	#,#	tempcoef2	#

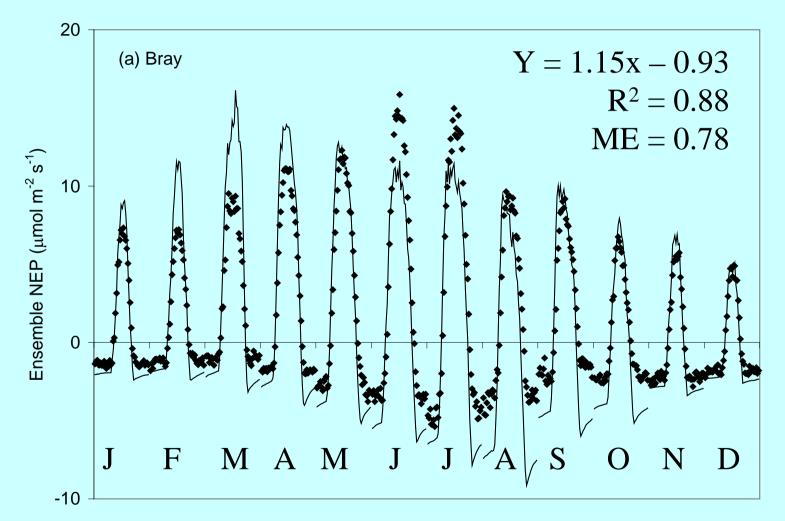
Instruction file

pif # (A000001)13:22 L1 L1 (A000002)13:22 L1 (A000003)13:22 T.1 (A000004)13:22 T.1 (A0000005)13:22 L1 (A0000006) 13:22 L1 (A000007)13:22 L1 (A000008)13:22 L1 (A000009)13:22 L1 (A0000010)13:22 L1 (A0000011)13:22 L1(A0000012)13:22 L1 (A0000013)13:22 L1 (A0000014)13:22 L1 (A0000015)13:22 т.1 (A0000016)13:22 L1 (A0000017)13:22 T.1 (A0000018)13:22 L1(A0000019)13:22 L1 (A0000020)13:22 L1 (A0000021)13:22 L1(A0000022)13:22

Application I: interpretation

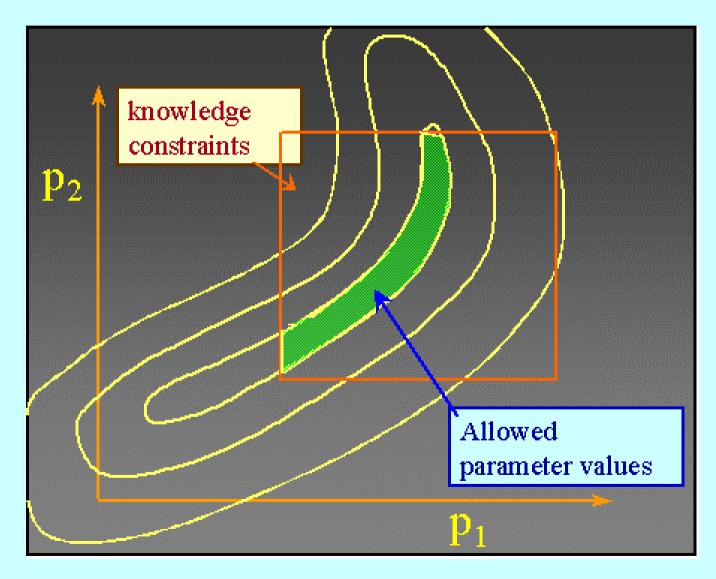


Application II: calibration

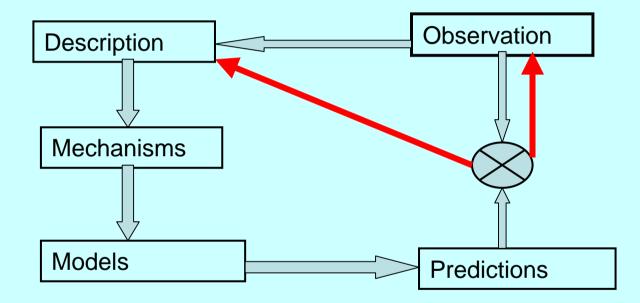


Medlyn et al. 2005

Application III: predictive analysis



Model as a set of hypotheses



Land surface modeling

- As a key component of earth system
- Synthesis leads to a better representation of ecological processes
- Use data to test the model

 Discrepancies lead to improvement, new discoveries

What are we doing differently from 10 years ago?

- More measurements with greater temporal and spatial resolution
- More synthesis and generalization
- Uncertainties in model and observations

Model-data fusion

- A technique being applied in physical sciences since 1960's, and will become a standard tool within the next decade or so;
- A platform to facilitate the interactions between modelling and observations
- Synthesis of information of different scales

Future

- Model data fusion as a power data synthesis tool
- Emergence of global change biology and earth system sciences
- Reducing uncertainties