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Atmospheric Boundary Layer (ABL)

Schematic Daytime Profiles
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Atmospheric Boundary Layer (ABL)

Daytime Convective Boundary Layer

4.5 ms-1

well mixed zi = 1400 m

large thermal 
convection
eddy

Tarong, Queensland (AUS), stack height: 210 m, zi = 1400 m, w* = 2.5 ms-1. Photo: Geoff Lane, CSIRO (AUS)

• Looping plume, in the presence of large convective thermal eddies
• Lifting limited by capping inversion; free troposphere above
• Well mixed conditions downwind, in mixed layer of  ~1400 m depth
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Nocturnal Boundary Layer (NBL)

Schematic Nighttime Profiles
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• strong vertical gradients
• mixing and vertical fluxes supressed
• stable ABL growth slow, driven by radiation and forced convection
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Nocturnal Boundary Layer (NBL)

Nighttime Stable Boundary Layer

• Early morning, steam fog indicates surface inversion
• “fanning” plume from 75 m stack indicates strong stability, flow from right
• “coning” plume from 150 m stack indicates neutral stability, flow from left
• In between, strong wind direction shear

Salem (Mass.) on a very cold February morning. Photo: Ralph Turcotte, Beverly Times

steam fog

fanning plume

coning plume

h ~ 150 – 200 m

, h ≈ 150 - 200 m
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free atmosphere
z = h:
~ 1000 m
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Atmospheric Boundary Layer (ABL)

Sublayers
neutral, weakly stable unstable, convective
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The neutrally stratified surface layer

Occupies ~ 10% of the PBL 
Strong gradients in:

wind speed 
temperature 
other scalars.

Controlling length scale 
distance to the surface, z
not depth of whole PBL depth, zi



The logarithmic velocity profile
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Modifications to the neutral log law

Tall roughness: displacement height d
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Monin-Obukhov similarity
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M-O similarity – θ & u profiles
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free atmosphere
z = h:
~ 1000 m

inner region

outer region

matching layer

roughness sublayer

z = h:
~ 50-100 m

z = z0:
~ 0.01 -50 m
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Atmospheric Boundary Layer (ABL)
Subdivision into Sublayers

neutral, weakly stable unstable, convective
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Normalized θ and u profiles

Unstable stratification
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Atmospheric surface layer - summary

Monin-Obukhov scaling links mean fields and 
scalar fluxes in the surface layer
M-O scaling used in many 
micrometeorological methods and techniques



Statistics

Variance and covariance
Spectra & cospectra
Data sampling rates
Averaging periods



Eddy fluxes

Covariances

' '1) HeatpH c wTρ=
' '2) Water vapord vE c w χ=

' '
23) COc d cF c w χ=

' '4) Momentumwuτ ρ=



Variance and covariance
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Sn = contribution of the total variance of θ per unit dn

Cwn = contribution of total covariance of wθ per unit dn

Approximation b/c calculations are over a finite time interval ∆t



Spectra & cospectra at Kansas grassland
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The covariance term: 
Horizontally homogeneous, 1D conditions

Must ensure that we:
• Measure all significant contributions to

• at high frequency
• at low frequency 

w c′ ′



High frequency covariance 
- how fast is fast enough?

( )
( )

2 :

10
C C C

C

C
required

h h n f h u h

u h
f

h

< =

=

( )2 :

10
C

required

h h n fz u z

uf
h

> =

=

Measure @ > 2 canopy heights Measure @ < 2 canopy heights

Kansas 
cospectrum
over 
grassland



Maximum sampling frequency vs
windspeed & measuring height

0

20

40

60

80

100

0 2 4 6 8 10
u  (m s-1)

f re
qu

ire
d (

H
z)

1

2

4

8

h (m)

10 Hz typical 
sampling 
frequency



Average for long enough so that
and x axis are parallel to the ground

z is normal to the ground 

thus can ignore mean advection

Include all significant low-frequency contributions 
to the covariance

In deep, convective, non-steady boundary layers, 
and in complex topography, 

classic Kaimal Kansas spectra underestimate the low 
frequency contributions to 

Low Frequency covariance
- how long should averaging period be?
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Low frequency covariance on a flat site

Finnigan, Clement, Malhi, 
Leuning and Cleugh (2001)

min1/ 10000s 2.8hf = =

Area under curves is the flux

Sampling at 10 Hz is OK here



Effect of increasing averaging time on Fc

Finnigan et al., (2001)



Typical averaging periods 30 mins

Convective conditions at Manaus tropical forest site ensure significant low 
frequency content in the covariance.  
This is lost if the averaging-coordinate rotation period is < ~4 hours  
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May be too short to capture all the significant LF covariance.
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Summary:1

The surface boundary layer occupies the lower 10% of the atmospheric 
boundary layer
Strong gradients in wind speed, temperature & other scalars in surface 
boundary layer
Controlling length scales in surface layer

distance to the surface, z
Obukhov stability parameter, L

Similarity scaling principles apply – log law profiles under neutral conditions
Stability modifies wind and scalar profiles
Eddy flux measurements made in surface layer or 
in roughness sublayer (additional length scale needed)



Summary:2

Eddy fluxes calculated as covariances in the time domain
' '

' '

' '

u w

wT
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heat

scalars

Spectra and cospectra in the frequency domain 

10 /requiredf u h≥High frequency sampling rate

Averaging period must be long enough to capture low-frequency 
contributions to eddy fluxes
Averaging periods may be >30 mins commonly used, especially 
over tall vegetation


