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Modelling

Why modelling?
Models as a set of hypothesis
Models as a synthesis tool

Interactions between modelling and
measurements



Model as a set of hypothesis

Description _—— Observation

|

Mechanisms

|

Models > Predictions




Use of surface flux models for interpreting
eddy flux measurements

* Absorbed radiation drives surface processes

» Conservation of mass and energy

* Energy partitioning: demand and supply



Energy partitioning: the demand and supply

* Energy partitioning: R =AE + H + G

Bowenratio : S = —
p AE




Overview of CBM

« CBM (CSIRO Biosphere Model) simulates
exchange of heat, water and CO2 between land
surface and atmosphere

» Key processes
« Radiative transfer
 Leaf energy balance

« Stomatal conductance: coupling transpiration and
photosynthesis

 Leaf photosynthesis model
* Plant and soll respiration
« Soil heat, water



The two-leaf canopy

* Why two-leaf approach?

— Multi-layered canopy requires more
computing

— One-leaf approach is inaccurate
» Essence of two-leaf canopy

— Bulk parameter formulation for sunlit and
shaded leaves separately

— Same equations for single leaf is used for big
leaf



Solar radiation and its spectra
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Radiation flux

» The energy unit for radiation is Joule m2 s,
or Watt m;

* For photosynthesis, it is not the energy, but
number of photos important for the
photosystems in a leaf

 The amount of energy per photo decreases
with an increase in wavelength. On average

1 W m=2=4.6umol m2s-for visible



Four radiation wavebands

Three radiation wavebands of solar radiation
(or shortwave radiation):

Solar radiation (short-wave radiation)
— Ultraviolet (0.2 to 0.4 um); 5-8%
— Visible (0.4 to 0.7 um), 46-50%
— Near infrad (0.7 to 1.5 um) 44-46%

Long-wave radiation >10 ( um)



Leaf optical properties

Leaf spectra
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Fig. 6.5 Idealized relation between the reflectivity, transmissivity and absorptivity of
a green leaf,



Surface radiation balance

GO0
400
b
£
=
2 2001
€
d
e
o
0
—uDO':
i_l_ | 1 | 1 1
Qo 03 06 (o]:] 12 15 18 21 24
Local time
(a)
I
4001
e rhTEm L.
= Ld/"‘*\--- .
:é' 200 L,
b= -
.o
E ok . . SL_\_ . I
100 Rn/-\.___-.,_____f'_“--_____________—.ﬁn
, ) L , ) )
Q0 03 06 09 12 15 18 2l 24
Local time
(b)

Fig. 4.12 Radiation balance at Bergen, Norway (60°N, 5°E): (a) on 13 April 1968,
(b) on 11 January 1968, The grey area shows the net long wave loss and the line Ry is
net radiation. Note that net radiation was calculated from measured fluxes of incoming
short and long wave radiation, assuming that the reflectivity of the surface was 0.20in
April (e.g. vegetation) and .70 in January (e.g. snow). The radiative temperature of
the surface was assumed equal to the measured air temperature.



The Beer's law

» Beer's law was independently discovered (in various forms) by Pierre Bouguer
in 1729, Johann Heinrich Lambert in 1760 and August Beer in 1852.

— |

I—l = exp(—alc) = exp(—KL)
0

Where
a: is absorption coefficient;
""7' |: path length;
1

c: concentration of absorbant;
k: extinction coefficient;

L: canopy leaf area index.




Extinction coefficient (k)

« Canopy extinction
coefficient, k, is
defined as k=G/sing,
where Gis the ratio of
mean projected area
of a leaf on a place
normal to the sun’ ray
and the actual leaf
area.

Fig. 5.1 Area A projected on surface at right angles to solar beam (A,) and on

° G=Ap/A horizontal surface (A,).



Leaf angle distribution and ki

Leaf angle Ky,
distribution

Horizontal leaves K,=1

Vertical leaves k,=2cotf/n

Spherical leaves k,=1/(2sinp)

Ellipsoidal leaves k,=(x2+cot?)0-5/(A(x)x)




Extinction coefficient for direct beam radiation (k)

Extinction coefficient (4 )
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Extinction coefficient for diffuse radiation (k)
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Sunlit leaf area fraction

 Fraction of sunlit leaf area, f,, is equal to gap
fraction, exp(-k,L).

* For a canopy, total sunlit leaf area index, L, IS
given by

I—sun = J‘exp(_kbg)dg — (1_ exp(_kbl‘)/ L



The two-stream approximation
(The Goudriaan’s model)
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Two-stream approximation

Analytic solution to two-stream approximation
suggests:

* the flux density of un-intercepted diffuse
radiation and scattered diffuse radiation
decreases exponentially with the exponent

being k;zj , where x is cumulative canopy LAl

from the canopy top, and k' =k Ji—-w.




Radiation absorption within a plant canopy

Radiation absorbed by the shaded leaves, g,
Oshace = 1 Ky (1= p5) eXp(_k;ét)J

Absorbed diffuse radiation

1,0 p)ep(KiE) Ky (1- @) exp(—k )]

absorbed scattered direct beam radiation

Radiation absorbed by the sunlit leaves, g, :
Osun = Ushage T Ibkb (1_ C())



Total amount of radiation absorbed

All sunlit leaves, Q

sun

Qun = | XP(K,E) 0 (£)dE

All shaded leaves,Q

shade

Qshade — j (1 o exp(_kbé:) )qshade (é:)d é: '



Leaf energy balance

¢'.f.l.i ¥ - + AE = d}ni
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Fig. 5.1. Energy exchanges for a leaf, where the radiative heat loss @, 1s the
difference between actual net radiation and isothermal net radiation.




Leaf energy balance

* The governing equation:
R.=1E. +H,

 Sensible heat:
H; = CpIOa(Tf -T,)9,

« Latent heat (Penman-monteith equation):

SRyt i T DiCp0.9,

S

Y

JE .



Net energy available to a leaf
Net available energy R, . can be calculated as
=Q+2(g,0T! —£,0T})
£,01, —&.0T; =¢,0T, —¢,0T, +¢&,0T, —&;0T;

=(g,—¢;)oT +e.0(T) =T/
~ (ga — &y )JTa4 _4‘9fJTa3(Tf _Ta)

If we define the radiative conductance (g,) as
LBEfO'TaS)
g, =
pPCp
iIsothermal net radiation available to the leaf, R . ;as
Ry = Ry = PaCo(Ty = T2,

= Q +2(g, —&.)oT.




Conductance for heat, water and CO,

Reference
Height

g, =0, +(0.5/g,)"
gw_l = gs_l + (1'075gb)_1 + ga_l
9. =(.579,)"+(1.27g,) " +9g,"




Table 5.1. Temperature dependence of the ‘radiative’ conductance gy, and
some typical values of the total thermal conductance (gyy) for a range of

values of g,,. The value in brackets is g as a percentage of gyy

£ (mm s™)

Temperature (°C) g, (mms™) gy =2 20 200 (mm s™1)
0 3.54 5.5(36) 23.5 (85) 204 (98)

10 4.10 6.1(33) 24.1 (83) 204 (98)

20 4.69 6.7 (30) 24.7(81) 205 (98)

30 5.37 7.4(27) 25.4(79) 205 (97)

40 6.10 8.1(25) 26.1(77) 206 (97)




145

Maximum leaf conductance, g ,(mmol m~s7)

100 200 300 400

500 600

1 Li T ]

—_——

1 | 1 l | 1 |

Succulents

Evergreen conifers
Deciduous woody plants
Herbs from shaded habitats
Evergreen woody plants
Desert- and steppe-shrubs
Deciduous fruit trees
Wild graminoids
Cultivated C4 grasses
Cultivated C,4 grasses
Herbaceous crop plants
Herbs from open habitats
Plants from wet habitats

0 4 8 12

16

Maximum leaf conductance, g,y (mms™)

Fig. 6.6. Maximum leaf conductance (g,,,) in different groups of plants. The
lines cover about 90 % of individual values reported. The open circles represent

group average conductances. (Adapted from Korner er al. 1979).



Stomatal conductance: coupling

water use and CO,, uptake

* Through stomata, CO2 enters and H20 exits the leaf;

— When [CO2] in intercellular space and guard cell | ,K*
moves into guard cell- stomata opens, vice versa;

— Too much water loss, stomata closing;

— Soil dries, ABA produced at root tips transported to
leaf, and induce stomata closure.

The Ball - Berry - Leuning model

af, A
(C,~T)(1+D,/D,)

gs:g0+



The combined model of stomatal conductance,
photosynthesis and transpiration for a leaf

Hi=c,0.(T; —T,)0,; unknowns: T, ,H,
AE, =(sR,, + D,c,0,0, )/(s+0,/9, ) unknows: E,g,

R,=H; +AE; +c p0.(T; -T,)0,; unknows: H, E; T,
af A
=0, + W : unknowns : g, A ,C,, D,
Js = % (C.,-T)(1+D,/D,) 9. A
D, =D, +s(T, -T,); unknows : D, T,

A =(C,-C,))q,.; unkonws : A ,C.
A =(C,-C)g,.; unknowns: A ,C.,C.,d.
Ah :Vc(Ci’QPAR’Tf)_ Iy unknows, A”VC



Leaf photosynthesis: the Calvin cycle

CALVIN CYCLE

|
2 3-Phospho /
glycerate (PGA)

2 1,3 bisphosphoglyceric
acld (DPGA)
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C3 photosynthesis model

Rubisco limited RuBP-—limited sink—Ilimited day respiration

A,=min V.. , V., , V, J 1— % - R,
—_—— — — | =
_—

Photorespiration loss

Rubisco-limited Light-limited Sink-limited
V,,.C J C-I
VCC — cmax I V = i V
| O, c, * _ _cmax.
Ci+ Kc(1+ %(J 9 Ci +2I Vc,p — 2



Respiration: plants

Plant respiration includes growth and
maintenance respiration (R,=R, + R.))

— Growth respiration (R,): about 30% of the total carbon
for growth is respired;

— Maintenance respiration (R,,): a function of substrate
concentration and temperature.

*R.= Ryexp(kT)
ck=a-bT



Respiration: soll

 Soil respiration, R, can be modelled as
Ry = R 1,(Te) 1(v,)

16 1.2

1.4 | 10 |

1.2 |

1.0 | 0.8 |

8:2 RAUN 06 | [TV
0.4 0.4

0.2 |

0.0 0.2 ‘

0 10 20 30 40 50 00 03 06 09 12

. Fraction of water-filled pore space
Soil temperature (°C) pore sp



Soil temperature and moisture

Darcy equation:
oT @( aTj

= | k— for temperature
ot 0\ 0z

00 Q(K 06

— = — for moisture
ot 0© azj



Soil temperature

When thermal conductivity, «, Is constant, and
T(0,t)=T + A(0)sin at

Solution to the Darcy equation

for soil temperature

T(z,t) =T + A(0)exp(—z/ D)sin(at — z/ D)
and

D= [~
@



Soil temperature profile
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Fig. 13.5 Diurnal change of soil temperature measured below a bare soil surface and
below potatoes (from van Eimern, 1964).



Soil evaporation

Two-staged processes
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Modell

E. = min

INng soil evaporation

( A

NS S

(OaAqga’

]
2 s+ )47 At
atmospheric - Ry )
\ demand energy—limited SOl supply )




The general structure of CABLE

Atmospheric forcings

Canopy
radiation;
sunlit & shaded .’(’
visible &
near infra-red,
albedo

2-leaf
canopy

SOUERPIN soil moisturer] [snow " oil+snow
carbon pools; allocation & flow  pcc







Estimating parameters in a surface flux model

« Parameters and variables

 Models

* Errors: systematic errors and random
errors



Inversion

You often do it without knowing it.
Many commercial packages available

Knowing your measurements well before
iInversion

Often requires a few trials and errors to get the
right answer



Basic concepts

* Maximum likelihood

* Least squares

» Sensitivity (derivatives)



Some basic concepts

» Estimate and probability distribution

4

P2 80% confidence

Parameter P1



Variance and covariance

var(P) =o’; var(R,)=o;

var(P, + P,) = o7 + 0} +2p,,0,0,
Therefore

o, =0 var(P,+P,)=var(P,)+ var(P,)
o, <0 var(P, +P,)<var(R,)+var(PR,)



General linear regression

( Y Xip X o X bl €
Y, Xop Xy 0 X bz €,
: = . . . . . +| .
yn an Xn2 Tt Xnm bm en
- 5 \ « J — —
dependent variable independent variables parameter error
nby1 nbym mbyl ) nby 1

In matrix form
Y=Y+e=Xb+e



Linear inversion theory

For a given set of measurements of (X,
Y,), the maximum likelihood estimate of

coefficient b is given by
b= (X7 X,) XY,
The covariance of b (cov(b)) is given by

cov(b) = a2 (XI X, )"



An example

Y: dependent variable; x, and x, are two
independent variables. The five set of
observations are: (X4;, Xy, Vi)

Y1 L Xy Xy €
Y, 1 Xy, Xy [[By €,
Yo [=|1 Xz X || By |+ &
Ya 1 Xy Xy (B €4
Ys L X5 Xy €

N\

y=y+b, +bx +bx, +¢



The covariance matrix : cov(b) = & (XoT Xo)_1

2
Oy 0y01 0,0,

cov(b)=| o,0, 0o, 0,0,

0,0, 0,0, O,

J
( (1 Xy Xy Y
(1 1 1 1 1)1 x, X,
=" Xio X Xz X X5 |1 X5 X
\Kor KXo Koz Ky KXo ) L Xy Xy
\ U— X5 X5 ))



Nonlinear inverse theory

Let's assume a general nonlinear
relationship between Y and X with
parameter p, and we wish to estimate
parameter p from a set of observations of
(X0, YO0).

The regression model can be written as

Y=Y +e=F(X,p)+e



Nonlinear inverse theory

* The least square cost, @, is given
¢ — Z(Yobs B F(X’ p)n(Yobs ) F(X’ p))T

*The optimal is found when

a%p:()



Nonlinear inverse theory

Using the least square theory, the estimate
of parameter p, pes, can be calculated as

. =(373)137(Y,,, - )

and the covariance of p is given by

cov(p)=c(J'I)"



What does it mean?

e Linear:

cov(b) = o?(X{QX, )"

e Nonlinear:

cov(p)=0"(3'QJ)"

« Solution to nonlinear problem is an tangent

linear approximation



Nonlinear parameter estimation
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Case study: Penman-Monteith equation

SR, + D,C,0.9,

f
iy O

Ow

* The equation: 1E

* Independent variables: T,, D_, R,,
* Dependent variable: E;
« Parameters, d., 9,, O«

gh_l = ga_l T (0-5/ gb)
g, =9, +(.0759,) +g,"
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Measured LE

xEmod-}\‘Eobs

Examining the results

b[0](14.7356725207

60 - b[1]710.9390366543
40 - r 2110.9390448076
20 - - - - -
20 40 60 80 100 120 140
15
10 A ° ° . S b[0]71-6.6226134061e-4
5 A o ® o . o o b[11118.6826975776e-6
0 et _ r2°1.16/13882196e-9
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-10 - ° ° * ° °
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Examining results (case 41)

b[0]153.9055001174
b[1]710.4990900399
r2010.9836812757

0 50 100 150 200

b[0]1-104.7097903421
b[1]710.9709495223
r2010.9360158089

ME, AE, . Measured AE

40 60 80 100 120 140 160
Predicted AE

® 60
Lu% 40 -
< 28 |

1

g -20 -

€ -40 - b[0]! \-39.6643_886185
- -60 - b[1]710.2340851113
< .80 , , , _r210.9360158089

-100 0 100 200 300 400

Net available energy



Examining the results (case 4)

200
150 -
g2
2= 0
-50 -
-100

b[0]=-12.34
b[1]=1.12
r2=0.87

=50 0 50 100 150 200

b[0]=-12.34
b[1]=0.12
r2=0.07

OOEN  NROD
SO0
| | | | | | |

KEmod_KEobs

-50 0 50 100 150 200
Predicted LE






Radiation absorbed in a canopy
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Introduction to PEST

 PEST is model-independent, nonlinear
parameter estimation package. It is a widely
used, free download software.

* |t provides stable solution to most nonlinear
inversion problems, with the capability of
powerful predictive analysis and regularization.

|t communicates to users and models by text
files that can be modified by users



How PEST works?

E Template file

Parameter value

\7

Model Control file

= = (running PEST)

Model output

Instruction file




pcf

* control data

EETFLE PESTMODE

MNEPAE MNOEBS2 NPARGP NPEIOE MNOBSGEE

NTPLFLE WNINSFLE PEECIS DPOINT NUMCOM JACFILE MESSFILE

ELAMEDA]l RLAMEFAC PHIRATESUOF PHIREDLAM MUMLAM

EELPARMAY FACPAEMAY FACOORIG

FHIEREDZEWH

NOPTMAYX PHIEEDSTEP NPHISTE MNPHINORED RELPAESTE MEELPAE

ICow ICOR IEIG

* parameter groups

EFARGPMME IMNCTYEP DERINC DERIMNCLE FOERECEN DEEINCMUL DEEMTHD

{one such line for each of the NPARGP parameter groups)

* parameter data

ELARNME PARTELANE PARCHGLIM PAEVAL1l PARLEND PARUEMD PAEGEP SCALE OFFSET DERCOM
{one such line for each of the NPAR parameters)

ELRNME PARTIED

{one such line for each tied parameter)

* observation groups

CEBGHME

{one such line for each chservation group)

* observation data

CESNME OBSVAL WEIGHT OBGHME

(one such line for each =of the NOBS ckservations)

* model command line

write the command which PEST must use to run the model

* model input/output

TEMPFLE INFLE

{one such line for each model input file containing parameters)
INSFLE OUTFLE

{one such line for each model ocutput file containing observations)
* prior informaticn

PILEL PIFAC * PARNME + PIFAC * log(PARMME) ... = PIVAL WEIGHT OBGHNME
{one such line for each of the NPRICE articles of prior information)




ptf #

#

ratioRL
ratioRL #,#

Template file

resprcl
resprecl

#, #

tempcoefl
tempcoefl

#,#

tempcoef?
tempcoef?

#



Instruction file

pif #

L1 (AO0O000001)13:22
L1 (AO0000002)13:22
LL1 (AO0000003)13:22
L1 (AO0000004)13:22
L1 (AO0000005)13:22
L1 (AO0000006)13:22
LL1 (AO0000007)13:22
L1 (AO0000008)13:22
L1 (AO0000009)13:22
LL1 (AO0000010)13:22
L1 (AO0000011)13:22
L1 (A0000012)13:22
.1 (AO0000013)13:22
L1 (AO0000014)13:22
LL1 (AO0000015)13:22
LL1 (AO0000016)13:22
L1 (A0000017)13:22
L1 (AO0000018)13:22
L1 (AO0000019)13:22
L1 (AO0000020)13:22
L1 (AO0000021)13:22
L1 (A0000022Y13:22



Application |: interpretation

Response of NPP to CO2 doubling
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See Wang, McMurtrie, Medlyn and Pepper (2006)




Application IT: calibration

Ensemble NEP (umol m s'1)
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Medlyn et al. 2005



Application lll: predictive analysis

knowledge & "
constraints |
P2




