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Modelling

• Why modelling?

• Models as a set of hypothesis

• Models as a synthesis tool

• Interactions between modelling and 
measurements



Model as a set of hypothesis

ObservationDescription

Mechanisms

Models Predictions



Use of surface flux models for interpreting 
eddy flux measurements

• Absorbed radiation drives surface processes

• Conservation of mass and energy 

• Energy partitioning: demand and supply



Energy partitioning: the demand and supply

• Energy partitioning: Rn=λE + H + G

E
H
λ

β = :ratio Bowen

β =0.3 β =10



Overview of CBM
• CBM (CSIRO Biosphere Model) simulates 

exchange of heat, water and CO2 between land 
surface and atmosphere

• Key processes
• Radiative transfer
• Leaf energy balance
• Stomatal conductance: coupling transpiration and 

photosynthesis
• Leaf photosynthesis model
• Plant and soil respiration
• Soil heat, water



The two-leaf canopy

• Why two-leaf approach?
– Multi-layered canopy requires more 

computing
– One-leaf approach is inaccurate

• Essence of two-leaf canopy
– Bulk parameter formulation for sunlit and 

shaded leaves separately
– Same equations for single leaf is used for big 

leaf



Solar radiation and its spectra



Radiation flux

• The energy unit for radiation is Joule m-2 s-1, 
or Watt m-2;

• For photosynthesis, it is not the energy, but 
number of photos important for the 
photosystems in a leaf

• The amount of energy per photo decreases 
with an increase in wavelength. On average

1 W m-2 = 4.6 μmol m-2 s-1 for visible



Four radiation wavebands

Three radiation wavebands of solar radiation 
(or shortwave radiation):

Solar radiation (short-wave radiation)
– Ultraviolet (0.2 to 0.4 μm); 5-8%
– Visible (0.4 to 0.7 μm), 46-50%
– Near infrad (0.7 to 1.5 μm) 44-46%

Long-wave radiation >10 ( μm)



Leaf optical properties



Surface radiation balance



The Beer’s law
• Beer's law was independently discovered (in various forms) by Pierre Bouguer

in 1729, Johann Heinrich Lambert in 1760 and August Beer in 1852.
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Where 

a: is absorption coefficient;

l: path length;

c: concentration of absorbant;

k: extinction coefficient;

L: canopy leaf area index.



Extinction coefficient (k)
• Canopy extinction 

coefficient, k, is 
defined as k=G/sinβ ,
where G is the ratio of 
mean projected area 
of a leaf on a place 
normal to the sun’ ray 
and the actual leaf 
area.

• G=Ap/A



Leaf angle distribution and kb

kb=(x2+cot2β)0.5/(A(x)x)Ellipsoidal leaves

kb=1/(2sinβ)Spherical leaves

kb=2cotβ/πVertical leaves

kb=1Horizontal leaves

kbLeaf angle 
distribution



Extinction coefficient for direct beam radiation (kb)



Extinction coefficient for diffuse radiation (kd)
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Sunlit leaf area fraction

• Fraction of sunlit leaf area, fsun is equal to gap 
fraction, exp(-kbL).

• For a canopy, total sunlit leaf area index, Lsun, is 
given by
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The two-stream approximation 
(The Goudriaan’s model)

Canopy

Soil

Two-stream approximation



Two-stream approximation

Analytic solution to two-stream approximation 
suggests:

• the flux density of un-intercepted diffuse 

radiation and scattered diffuse radiation 

decreases exponentially with the exponent 

being        , where x is cumulative canopy LAI 

from the canopy top, and 
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Radiation absorption within a plant canopy
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Total amount of radiation absorbed
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Leaf energy balance

H



Leaf energy balance

• The governing equation:

• Sensible heat:

• Latent heat (Penman-monteith equation):
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Net energy available to a leaf
Net available energy Rnf can be calculated as
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Conductance for heat, water and CO2
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Stomatal conductance: coupling 
water use and CO2 uptake

• Through stomata, CO2 enters and H2O exits the leaf;
– When [CO2] in intercellular space and guard cell↓,K+ 

moves into guard cell, stomata opens, vice versa;
– Too much water loss, stomata closing;
– Soil dries, ABA produced at root tips transported to 

leaf, and induce stomata closure.
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The combined model of stomatal conductance, 
photosynthesis and transpiration for a leaf
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Leaf photosynthesis: the Calvin cycle



C3 photosynthesis model

Rubisco-limited Light-limited Sink-limited
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Respiration: plants
Plant respiration includes growth and 
maintenance respiration (Rp=Rg + Rm)
– Growth respiration (Rg): about 30% of the total carbon 

for growth is respired;
– Maintenance respiration (Rm): a function of substrate 

concentration and temperature.

• Rm= R0exp(kT)
• k = a - bT



Respiration: soil

• Soil respiration, Rs, can be modelled as

)()( 210 sss vfTfRR =

f1(Ts)

Soil temperature (oC)
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Soil temperature and moisture 
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Soil temperature
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Soil temperature profile



Soil evaporation

Two-staged processes
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Modelling soil evaporation

( )
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

Δ
Δ

+
Δ=

−

32143421
321

supply soillimitedenergydemand
catmospheri

t
h

s
sRgE sns

aqas
θ

λγ
ρ ,,min



Atmospheric forcings

Canopy 
radiation;
sunlit & shaded 
visible &
near infra-red,
albedo stomata transp. 

& photosynthesis

Plant Carbon 
fluxes;
GPP
NPP
NEP

2-leaf 
canopy

SEB  & fluxes;
for soil-vegetation
system; Tf

λEf , Hf , λEg , Hg;

transpiration

soil temp. soil moisture snow

carbon pools; allocation & flow

The general structure of CABLE

Soil+snow

BGC





Estimating parameters in a surface flux model

• Parameters and variables

• Models

• Errors: systematic errors and random 
errors



Inversion

• You often do it without knowing it. 

• Many commercial packages available

• Knowing your measurements well before 
inversion

• Often requires a few trials and errors to get the 
right answer



Basic concepts

• Maximum likelihood

• Least squares

• Sensitivity (derivatives)



Some basic concepts

• Estimate and probability distribution



Variance and covariance
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General linear regression
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Linear inversion theory

• For a given set of measurements of (X0, 
Y0), the maximum likelihood estimate of 
coefficient b is given by 

• The covariance of b (cov(b)) is given by

( ) 0
T
00

T
0 YXXXb 1−

=

( ) 12)cov( −
= 0

T
0 XXb σ



An example
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Y: dependent variable; x1 and x2 are two 
independent variables. The five set of 
observations are: (x1i, x2i, yi)
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Nonlinear inverse theory

• Let’s assume a general nonlinear 
relationship between Y and X with 
parameter p, and we wish to estimate 
parameter p from a set of observations of 
(X0, Y0).

• The regression model can be written as

epX,FeYY +=+= )(ˆ



Nonlinear inverse theory

• The least square cost, Φ, is given
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Nonlinear inverse theory

Using the least square theory, the estimate 
of parameter p, pes, can be calculated as

and the covariance of p is given by
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What does it mean?

• Linear:

• Nonlinear:

• Solution to nonlinear problem is an tangent 
linear approximation
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Nonlinear parameter estimation

Parameter value
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Case study: Penman-Monteith equation

• The equation:

• Independent variables: Ta, Da, Rni

• Dependent variable: Ef

• Parameters, ga, gb, gs
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Cost 
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Examining the results
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Examining results (case 41)
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Examining the results (case 4)
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Radiation absorbed in a canopy

L=1, visible
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Introduction to PEST
• PEST is model-independent, nonlinear 

parameter estimation package. It is a widely 
used, free download software.

• It provides stable solution to most nonlinear 
inversion problems, with the capability of 
powerful predictive analysis and regularization.

• It communicates to users and models by text 
files that can be modified by users



How PEST works?

Template file

Parameter value

Model

Instruction file

Model output

Control file

(running PEST)





Template file



Instruction file



Application I: interpretation
Response of NPP to CO2 doubling
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See Wang, McMurtrie, Medlyn and Pepper (2006)



Application II: calibration
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Application III: predictive analysis


